PetDB Citations


  1. Guilbaud, M-N., Siebe, C., Rasoazanamparanay, C., Widom, E., Salinas, S., Govea, R., Petrographic, geochemical, and isotopic (Sr-Nd-Pb-Os) study of Plio-Quaternary volcanics and the Tertiary basement in the Jorullo-Tacámbaro area, Michoacán-Guanajuato Volcanic Field, Mexico, Journal of Petrology, doi:10.1093/petrology/egaa006
  2. Han, S., Li, M., Zhang, Q., & Song, L., 2020, An Automated Method to Generate and Evaluate Geochemical Tectonic Discrimination Diagrams Based on Topological Theory. Minerals, doi: 10.3390/min10010062
  3. Kakefuda, M., Tsujimori, T., Yamashita, K., Iizuka, Y., Flores, K., 2020, Revisiting Pb isotope signatures of Ni–Fe alloy hosted by antigorite serpentinite from the Josephine Ophiolite, USA, Journal of Mineralogical and Petrological Sciences, doi: 10.2465.jmps.190731a
  4. Le Roex, A., Tinguely, C., Gregiore, M., 2020, Eclogite and garnet pyroxenite xenoliths from kimberlites emplaced along the southern margin of the Kaapvaal craton, southern Africa: mantle or lower crustal fragments?, J Petrology, doi:10.1093/petrology/egaa040
  5. Li, P., Xia, Q., Dallai, L., Bonatti, E., Brunelli, D., Cipriani, A., Ligi, M., 2020High H2O Content in Pyroxenes of Residual Mantle Peridotites at a Mid Atlantic Ridge Segment, Nature, doi:10.1038/s41598-019-57344-4
  6. Merli, M., Bonadiman, C., Pavese, A., 2020, Aluminium distribution in an Earth’s non–primitive lower mantle, GCA, doi: 10.1016/j.gca.2020.02.023
  7. Nielsen, R. Ustunisik, G., Lange, A., Tepley, F., Kent, A., Trace Element and Isotopic Characteristics of Plagioclase Megacrysts in MORB Plagioclases Ultraphyric Basalts (PUB), G-Cubed, doi:10.1029/2019GC008638
  8. Özturk, M., 2020, Assessment of discrimination of mafic rocks using trace element systematics with machine learning,PhD Thesis, The Graduate School of Natural and Applied Sceince of Middle East Technical University, 326 pp.
  9. Secchiari, A., Montanini, A., Bosch, D., Macera, P., Cluzel, D., 2020, Sr, Nd, Pb and trace element systematics of the New Caledonia harzburgites: Tracking source depletion and contamination processes in a SSZ setting, Geoscience Frontiers, doi:10.1016/j.gsf.2019.04.004
  10. Sighinolfi, G., Barbieru, M., Brunelli, D., Serra, R., 2020, Mineralogical and Chemical Investigations of the Amguid Crater (Algeria): Is there Evidence on an Impact Origin?, Geosciences, doi:10.3390/geosciences10030107
  11. Sun, T., Li, C., Wang, D., Cheng, W., Ripley, E., 2020, Neoarchean arc basaltic magmatism and associated sulfide mineralization in the North China Craton: Evidence from the Taoke mafic-ultramafic complex in Shandong Province, Precambrian Research, doi:10.1016/j.precamres.2020.105594
  12. Sun, J., Rudnick, R., Kostrovitsky, S., Kalashinkova, T., Kitajima, K., Li, R., Shu, Q., 2020, The origin of low-MgO eclogite xenoliths from Obnazhennaya kimberlite, Siberian craton, Contrib Min Pet, doi:10.1007/s00410-020-1655-6
  13. Yu, Y., Hunag, X-L., Sun, M., Yuan, C., 2020, Missing SrNd isotopic decoupling in subduction zone: Decoding the multi-stage dehydration and melting of subducted slab in the Chinese Altai, Lihtos, doi: 10.1016/j.lithos.2020.105465
  14. Zhang, G, Zhang, J., Wang, S., Zhao, J., 2020, Geochemical and chronological constraints on the mantle plume origin of the Caroline Plateau. Chemical Geology, doi: 10.1016/j.chemgeo.2020.119566
  15. Zhou, H., Hoernle, K., Geldmacher,J., Hauff, F., Homrighausen, S., Garbe-Scheoenberg, D., JUng, S., 2020, Geochemistry of Etendeka magmatism: Spatial heterogeneity in the Tristan-Gough plume head, EPSL, doi:10.1016/j.epsl.2020.116123


  1. Angel, D., Albert, H., Tuan, L., Phi, N., Utami, S., Khanh, P., Widiwijayanto, C., Costa, F., 2019, PWD: A Petrological Workspace & Database tool, G-Cubed, doi: 10.1029/2019GC008710
  2. Belay, I., Tanaka, R., Kitagawa, H., Kobayashi, K., Nakamura, E., 2019, Origin of ocean island basalts in the West African passive margin without mantle plume involvement, Nature Communications, doi: 10.1038/s41467-019-10832-7
  3. Benjamin, W., O'Neil, J., Rizo, H., 2019, Geochemistry and petrogenesis of the early Archean mafic crust from the Saglek-Hebron Complex (Northern Labrador), Precambrian Research, doi:10.1016/j.precamres.2019.04.001
  4. Bennett, E., Jenner, F., Millet, M-A., Cashman, V., Lissenberg, C., 2019, Deep roots for mid-ocean-ridge volcanoes revealed by plagioclase-hosted melt inclusions, Nature, doi: 10.1038/s41586-019-1448-0
  5. Bosworth, W., Khalil, S., Ligi, M., Stockli, D., McClay, K., 2019, Geology of Egypt: The Northern Red Sea, In: Hamimi Z., El-Barkooky A., Martínez Frías J., Fritz H., Abd El-Rahman Y. (eds) The Geology of Egypt. Regional Geology Reviews. Springer, Cham, doi:10.1007/978-3-030-15265-9_9
  6. Burton-Johnson, A., Macpherson, C., Ottley, C., Nowell, G., Boyce, A., 2019, Generation of the Mt Kinabalu granite by crustal contamination of intraplate magma modelled by Equilibrated Major Element Assimilation with Fractional Crystallisation (EME-AFC), Journal of Petrology, doi:10.1093/petrology/egz036
  7. Chen, S., Hin, R., John, T., Brooker, R., Bryan, B., Niu, Y., Elliott, T., 2019, Molybdenum systematics of subducted crust record reactive fluid flow from underlying slab serpentine dehydration, Nature Communications, doi: 10.1038/s41467-019-12696-3
  8. Chen, Y., Niu, Y., Wang, X., Gong, H., Guo, P., Gao, Y., Shen, F., 2019, Petrogenesis of ODP Hole 735B (Leg 176) Oceanic Plagiogranite: Partial Melting of Gabbros or Advanced Extent of Fractional Crystallization? G-Cubed, doi:10.1029/2019GC008320
  9. Choi, H-O., Choi, S-I., Lee, Y-S., Ryu, J-S., Lee, D-C., Lee, S-G., Sohn, Y-K., Liu, J-Q., 2019, Petrogenesis and mantle source characteristics of the late Cenozoic Baekdusan (Changbaishan) basalts, North China Craton. Gondwana Research, doi:10.1016/
  10. de Graaff, S., Goodenough, K., Klaver, M., Lissenberg, C., Jansen, M., Millar, I., Davies, G., 2019, Evidence for a moist to wet source transition throughout the Oman‐UAE Ophiolite, and implications for the geodynamic history, G-Cubed, doi: 10.1029/2018GC007923
  11. Dürkefälden, A., Hoernle, K., Hauff, F., Wartho, J-A., van den Bogaard, P., Werner, R., 2019, Age and geochemistry of the Beata Ridge: Primary formation during the main phase (~89 Ma) of the Caribbean large Igneous Province, Lithos, doi: 10.1016/j.lithos.2018.12.021
  12. Fang, X., Zeng , Z., Hu, S., Li, X., Chen, Z., Chen, S., Zhu, B., 2019, Origin of Pumice in Sediments from the Middle Okinawa Trough: Constraints from Whole-Rock Geochemical Compositions and Sr-Nd-Pb Isotopes, Journal of Marine Science and Engineering, doi: 10.3390/jmse7120462
  13. Freymuth, H., Andersen, M., Elliott, T., 2019, Uranium isotope fractionation during slab dehydration beneath the Izu arc, EPSL, doi: 10.1016/j.epsl.2019.07.006
  14. Gard, M., Hasterok, D., Halpin, J., 2019, Global whole-rock geochemical database compilation, Earh System Science Data, doi: 10.5194/essd-11-1553-2019
  15. Gard, M., Hasterok, D., Hand, M., Cox, G., 2019, Variations in continental heat production from 4 Ga to the present: Evidence from geochemical data, Lithos, doi:10.1016/j.lithos.2019.05.034
  16. Gianola, et al., 2019, The crust-mantle transition of the Khantaishir arc ophiolite (western Mongolia), Journal of Petrology, doi:10.1093/petrology/egz009
  17. Greber, N., Dauphas, N., 2019, The chemistry of fine-grained terrigenous sediments reveals a chemically evolved Paleoarchean emerged crust, Geochimica et Cosmochimica Acta, doi:10.1016/j.gca.2019.04.012
  18. Han, S., Li, M-C., Zhang, Q., Li, H., 2019, A Mathematical Model Based on Bayesian Theory and Gaussian Copula for the Discrimination of Gabbroic Rocks from Three Tectonic Settings, Journal of Geology, doi:10.1086/705413
  19. Hannington, M., Kopp, H., Schnabel, M., Devey, C., Petersen, S. 2019, RV SONNE Fahrtbericht/Cruise Report SO267,Berichte aus dem GEOMAR
    Helmholtz-Zentrum für Ozeanforschung Kiel, doi: 10.3289/GEOMAR_REP_NS_49_2019
  20. Harrison, L., Weiss, D. Garcia, M., 2019, The Multiple Depleted Mantle Components in the Hawaiian-Emperor Chain: A Review, Chemical Geology, doi: 10.1016/j.chemgeo.2019.119324
  21. He, Y., Bai, Y., Tian, D., Yao, L., Fan, R., Chen, P.2019, A review of geoanalytical databases, Acta Geochimica, doi:10.1007/s11631-019-00323-3
  22. Hernandez-Uribe, D., Palin, R., 2019, Petrological model for subducted oceanic crust, J Metamorphic Geology, doi: 10.1111/jmg.12483
  23. Herzberg, et al., 2019, Origin of high-Mg bimineralic eclogite xenoliths in kimberlite: A comment on a papers by Aulbach and Arndt (2019), EPSL, doi: 10.1016/j.epsl.2019.01.014
  24. Hole, et al., 2019, Magmatism in the North Atlantic Igneous Province; mantle temperatures, rifting and geodynamics, Earth Science Reviews, doi:10.1016/j.earscirev.2019.02.011
  25. Jaques, G., Hauff, F., Joernle, K., Werner, R., Uenzelmann-Neben, G., Garbe-Schoenberg, D., Fischer, M., 2019, Nature and origin of the Mozambique Ridge, SW Indian Ocean, Chemical Geology, doi: 10.1016/j.chemgeo.2018.12.027
  26. Jones, R., van Keken, P., Hauri, E., Tucker, J., Vervoort, J., Ballentine, C., 2019, Origins of the terrestrial Hf-Nd mantle array: Evidence from a combined geodynamical-geochemical approach, EPSL, doi:10.1016/j.epsl.2019.04.015
  27. Jones, M., 2019, Geophysical and Geochemical Constraints on
    Submarine Volcanic Processes, Doctoral Thesis MIT-WHOI
  28. Jones, M., Wanless, V., Soule, S., Kurz, M., Mittelstaedt, E., Fornari, D. J.Curtice, J., Klein, F., Le Roux, V., Brodsky, H., Péron, S., Schwartz, D., 2019, New constraints on mantle carbon from Mid-Atlantic Ridge popping rocks, EPSL, doi: 10.1016/j.epsl.2019.01.019
  29. Kokhan, A., Dubinin, E., Sushchevskaya, N., 2019, Structure and Evolution of the Eastern Part of the Southwest Indian Ridge, Geotectonics, doi: 10.1134/S0016852119040034
  30. Lambart, S., Koorneef, J., Millet, M-A., Davies, G., Cook, M., Lissenberg, C., 2019, Highly heterogeneous depleted mantle recorded in the lower oceanic crust, Nature Geoscience, doi:10.1038/s41561-019-0368-9
  31. Li, W., Tao, C., Zhang, W., Liu, J., LIang, J., Liao, S., Yang, W., 2019, Melt Inclusions in Plagioclase Macrocrysts at Mount Jourdanne, Southwest Indian Ridge (~64◦ E): Implications for an Enriched Mantle Source and Shallow Magmatic Processes, Minerals, doi:10.3390/min9080493
  32. Lieu, W., and Stern, R., 2019, The robustness of Sr/Y and La/Yb as proxies for crust thickness in modern arcs, Geosphere, doi: 10.1130/GES01667.1
  33. Lin, C., Harris, R., Sun W., Zhang, G., 2019, Geochemical and Geochronological Constraints on the Origin and Emplacement of the East Taiwan Ophiolite, G-Cubed, doi: 10.1029/2018GC007902
  34. Lissenberg, J., MacLeod, C., Bennett, E., 2019, Consequences of crystal mush-dominated magma plumbing system: a mid-ocean ridge perspective.Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, doi:10.1098/rsta.2018.0014
  35. Liu, B., Liang, Y., 2019, Importance of the size and distribution of chemical heterogeneities in the mantle source to the variations of isotope ratios and trace element abundances in mid-ocean ridge basalts, GCA, doi: 10.1016/j.gca.2019.10.013
  36. Liu, C., Runyon, S., Knoll, A., Hazen R., 2019, The same and not the same: Ore geology, mineralogy and geochemistry of Rodinia assembly versus other supercontinents, Earth-Sconce Reviews, doi:10.1016/j.earscirev.2019.05.004
  37. Liu, H., Sun W-D., Deng, J., 2019, Statistical analysis on secular records of igneous geochemistry: Implication for the early Archean plate tectonics, Geological Journal, doi: 10.1002/gj.3484
  38. Liu, H., Sun, W-D., Deng, J-H., 2019, Transition of subduction-related magmatism from slab melting to dehydration at 2.5 Ga, Precambrian Research, doi: 10.1016/j.precamres.2019.105524
  39. Liu, H., Sun, W., Zartman, R., Tang, M., 2019, Continuous plate subduction marked by the rise of alkali magmatism 2.1 billion years ago, Nature Communications, doi:10.1038/s41467-019-11329-z
  40. Long, X., Geldmacher, J., Hoernle, K., Hauff, F., Wartho, A., Garbe-Schoenberg, D., Grevemeyer, I., 2019, Age and origin of Researcher Ridge and an explanation for the 14 N anomaly on the Mid-Atlantic Ridge by plume-ridge interaction, Lithos, doi: 10.1016/j.lithos.2019.01.005
  41. Lustrino, M., Luciani, N., Stagno, V., 2019, Fuzzy petrology in the origin of carbonatitic/pseudocarbonatitic Ca-rich ultrabasic magma at Polino (central Italy), Nature, doi:10.1038/s41598-019-45471-x
  42. Mallick, S., Salters, V., Langmuir, C., 2019, Geochemical Variability Along The Northern East Pacific Rise: Coincident Source Composition and Ridge Segmentation,G-Cubed, doi: 10.1029/2019GC008287
  43. Mangler, M., Prytulak, J., Gisbert, G., Delgado-Granados, H., Petrone, C.,2019, Interplinian effusive activity at Popocatepetl volcano, Mexico : new insights into evolution and dynamics of the plumbing system, Volcanica, doi: 10.30909/vol.02.01.4572
  44. Nakashole, A., le Roex, A., Reid, D., 2019, Geochemistry and petrogenesis of the Tsirub nephelinite intrusions, southern Namibia, J Afr Earth Svi, doi:10.1016/j.jafrearsci.2019.103701
  45. Naumova, V., Eremenko, V., Platonov, K., Dyakov, S.,Eremenko, A., 2019, Development of geographically distributed information-analytical geological environment, Russian Journal of Earth Sciences, doi: 10.2205/2019ES000696
  46. Nauret, F., Famin, V., Vlastelic, I., Gannoun, A., 2019, A trace of recycled continental crust in the Réunion hotspot, Chemical Geology, doi:10.1016/j.chemgeo.2019.06.009
  47. Nebel, O., Sossi, P., Benard, A., Arculus, R., Yaxley, M., Davies, D., Ruttor, S., 2019, Reconciling petrological and isotopic mixing mechanisms in the Pitcairn mantle plume using stable Fe isotopes, EPSL, doi:10.1016/j.epsl.2019.05.037
  48. Ootes, L., Sandeman, H., Cousens, B., Luo, Y., Pearson, G., Jackson, V., 2019, Pyroxenitic magma conduits (ca. 1.86 Ga) in Wopmay orogen and Slave craton: Petrogenetic constraints from whole rock and mineral chemistry, Lithos, doi: 10.1016/j.lithos.2019.105220
  49. Pantazidis, A., Baziotis, I., Solomonidou, A., Manoutsoglou, E., Palles, D., Kamitsos, E., Karageorgis, A., Profitiliotis, G., Kondoyanni, M., Klemme, S., Berndt, J., Ming, D., Asimow, P., 2019, Santorini volcano as a potential Martian analogue: The Balos Cove Basalts, doi:10.1016/j.icarus.2019.02.026
  50. Park, S-H., Langmuir, C., Sims, K., Blichert-Toft, J., Kim, S-S., Scott, S., Lin, J., Choi, H., Yang, Y-S., Michael, P., 2019, An isotopically distinct Zealandia–Antarctic mantle domain in the Southern Ocean, Nature Geoscience, doi:10.1038/s41561-018-0292-4
  51. Parr, C., Gries, C., O'Brien, M., Downs, R., Duerr, R., Koskela, R., Tarrant, P., Maull, K., Hoelbelheinrich, N., Stall, S., 2019, A Discussion of Value Metrics for Data Repositories in Earth and Environmental Sciences, Data Science Journal, doi: 10.5334/dsj-2019-058
  52. Rampone, E. Borghini, G., Bashc, V., 2019, Melt migration and melt-rock reaction in the Alpine-Apennine peridotites: Insights on mantle dynamics in extending lithosphere.Geoscience Frontiers, doi: 10.1016/j.gsf.2018.11.001
  53. Ren, Q., Li, M., Han, S., Zhang, Y., Zhang, Q., Shi, J., 2019, Basalt Tectonic Discrimination Using Combined Machine Learning Approach, Minerals, doi:10.3390/min9060376
  54. Rumbolo, T., 2019, Sr-Nd-Pb-Hf- isotopic study of mantle rocks in the ophiolitic sequences of the Alpine-Apennine orogenic belt: Implications for heterogeneity in the MORB sources, Plinius, doi:10.19276/plinius.2019.01011
  55. Sano, T., Yamashita, S., 2019, Evolution, hydrothermal assimilation, and ascent of magma inferred from volatile contents in MORB glasses: An example from thick lava pile at IODP Site 1256, Lithos, doi: 10.1016/j.lithos.2019.07.010
  56. Shimizu, K., Ito, M., Chang, Q., Miyazaki, T., Ueki, K., Toyama, C., Sends, R., Vaglarov, B., Ishikawa, T., Kimura, J-I., 2019, Identifying volatile mantle trend with the water–fluorine–cerium systematics of basaltic glass, Chemical Geology, doi:10.1016/j.chemgeo.2019.06.014
  57. Shimizu, K., Saal, A., Hauri, E., Perfit, M., Hekinian, R., 2019,Evaluating the roles of melt-rock interaction and partial degassing on the CO2/Ba ratios of MORB: implications for the CO2 budget in the Earth’s depleted upper mantle, GCA, doi:10.1016/j.gca.2019.06.013
  58. Tang, Y-W., Chen, L., Zhao, Z-F., Zheng, Y-F., 2019, Geochemical evidence for the production of granitoids through reworking of the juvenile mafic arc crust in the Gangdese orogen, southern Tibet, Geology, doi: 10.1130/B35304.1
  59. Tuller-Ross, B., Marty, B., Chen, H., Kelley, K., Lee, H., Wang, K., 2019, Potassium isotope systematics of oceanic basalts, GCA, doi:,10.1016/j.gca.2019.06.001
  60. Venugupal, S., Moune, S., Williams-Jones, G., Druitt, T., Vigouroux, N., Wilson, A., Russell, J., 2019, Two distinct mantle sources beneath the Garibaldi Volcanic Belt: Insight from olivine-hosted melt inclusions, Chemical Geology, doi:10.1016/j.chemgeo.2019.119346
  61. Wang, W., Chu, F., Wu, X., Li, Z., Chen, L., Li, X., Yan, Y., Zhang, J., 2019, Constraining Mantle Heterogeneity beneath the South China Sea: A New Perspective on Magma Water Content, Minerals, doi: 10.3390/min9070410
  62. Wang, J., Xiong, X., Takahashi, E., Zhang, L., Liu, X., 2019, Oxidation state of arc mantle revealed by partitioning of V, Sc and Tibetween mantle minerals and basaltic melts, JGR, doi:10.1029/2018JB016731
  63. Wanke, M., Clynne, M., von Quadt, A., Venneman, T., Bachmann, O., 2019, Geochemical and petrological diversity of mafic magmas from Mount St. Helens, Contrib Min Pet, doi:10.1007/s00410-018-1544-4
  64. Wasilewski, B., O'Neil, J., Rizo, H., 2019, Geochemistry and petrogenesis of the early Archean mafic crust from the Saglek-Hebron Complex (Northern Labrador), Precambrian Research, doi: 10.1016/j.precamres.2019.04.001
  65. Whattam, S., Montes, C., Stern, R., 2019, Early Central American forearc follows the subduction initiation rule, Gondwana Resarch, doi:10.1016/
  66. Willig, M., Stracke, A., Beier, C., Salters, V., 2019, Constraints on mantle evolution from Ce-Nd-Hf isotope systematics, GCA, doi:10.1016/j.gca.2019.12.029
  67. Wu, X., Tian, L., Wang, X-C, Chu, F., Yan, Q., Sun, F., Li, X., Wang, W., Yu, L., Li, Z., Chen, L., 2019, Tracing mantle sources in the northern Lau backarc basin by independent component analysis of basalt isotopic compositions, International Geology Review, doi: 10.1080/00206814.2018.1561337
  68. Wu, Y., Guo, F., Wang, X-C., Zhang, B., Zhang, X., Alemayehu, M., Wang. G., 2019, Generation of Late Cretaceous Ji’an basalts through asthenosphere-slab interaction in South China, Geol Soc America Bull., doi:10.1130/B35196.1
  69. Xu, C., Inoue, T., 2019, Melting of Al-richphase D up to the uppermost lower mantle and transportation of H2O to the deep Earth, G-Cubed, doi:10.1029/2019GC008476
  70. Yang, A., Wang, C., Liang, Y., Lissenberg, C., 2019, Reaction between mid-ocean ridge basalt and lower oceanic crust: An experimental study, G-Cubed, doi: 10.1029/2019GC008368
  71. Yao, J-H., Zhu, W-G., Li, C., Zhong, H., Yu, S., Ripley, E., Bai, Z-J., 2019, Olivine O isotope and trace element constraints on source variation of picrites in the Emeishan flood basalt province, SW China, Lithos, doi: 10.1016/j.lithos.2019.04.019
  72. Yu, X., Dick, H., 2019, Plate-driven micro-hotspots and the evolution of the Dragon Flag melting anomaly, Southwest Indian Ridge, EPSL, doi:10.1016/j.epsl.2019.116002
  73. Zhang, L., Sun, W,m Zhang, Z., An, Y., Liu, F., 2019, Iron isotope behavior during melt‐peridotite interaction in supra‐subduction zone ophiolite from Northern Tibet, JGR Solid Earth, doi:10.1029/2019JB018823
  74. Zheng, H., Zhong, L., Wang, R., Yang, L., Kapsiotis, A., Xiao, Y., Wan, Z, 2019, Geochemistry and geochronology of mafic rocks from the Jinghe ophiolitic mélange, northwest China: implications for plume-related magmatism and accretionary processes within the North Tianshan Ocean, Lithos, doi:10.1016/j.lithos.2019.105246
  75. Zhang, L., Sun, W., Chen. R-X., 2019, Evolution of serpentinite from seafloor hydration to subduction zone metamorphism: petrology and geochemistry of serpentinite from the ultrahigh pressure North Qaidam orogen in northern Tibet, Lithos, doi:10.1016/j.lithos.2019.105158
  76. Zhu, L., Zhang, G., Liu,Y., Lin, J., Tong, X., Jiang, S., J., 2019, Improved in-situ Determination of Sr Isotope Ratio in Silicate Samples Using LA-MC-ICP-MS and Its Wider Application for Fused Rock Powder, Earth Sci., doi: 10.1007/s12583-019-1214-0


  1. Barnes, S., and Arndt, N., 2018 Chapter 6 - Distribution and Geochemistry of Komatiites and Basalts Through the Archean, Earth's Oldest Rocks, pp. 103-132, doi:10.1016/B978-0-444-63901-1.00006-X
  2. Borghini, G., Francomme, J., Fumagalli, P., 2018, Melt-dunite interactions at 0.5 and 0.7 GPa: experimental constraints on the origin of olivine-rich troctolites, Lithos, doi:10.1016/j.lithos.2018.09.022
  3. Brunelli, D., Cipriani, A., Bonatti, E., 2018,Thermal effects of pyroxenites on mantle melting below mid-ocean ridges, Nature Geoscience, doi:10.1038/s41561-018-0139-z
  4. Chen, B., Yu, J-J., Liu, S-J, 2018, Source characteristics and tectonic setting of mafic–ultramafic intrusions in North Xinjiang, NW China: Insights from the petrology and geochemistry of the Lubei mafic–ultramafic intrusion, Lithos, doi:10.1016/j.lithos.2018.03.016
  5. Cheng. T., Nebl, O., Sossi, P., Wu, J., Siebel, W., Chen, F., Nebel-Jacobsen, Y., 2018, On the Sr-Nd-Pb-Hf isotope code of enriched, Dupal-type sub-continental lithospheric mantle underneath south-western China, Chemical Geology, doi:10.1016/j.chemgeo.2018.05.018
  6. Coogan, L., and Gillis, K., 2018 Temperature dependence of chemical exchange during seafloor weathering: Insights from the Troodos ophiolite, GCA, doi:10.1016/j.gca.2018.09.025
  7. Crow, M., Van Waveren, I., Hasibuan, F., 2018, 
    The geochemistry, tectonic and palaeogeographic setting of the Karing Volcanic Complex and the Dusunbaru pluton, an Early Permian volcanic - plutonic centre in Sumatra, Indonesia, J Asian Earth Sci, doi:10.1016/j.jseaes.2018.08.003
  8. Deng, Z., Moynier, F., Sossi, P., Chaussidon, M., 2018, Bridging the depleted MORB mantle and the continental crust using titanium isotopes, Geochemical Perspectives Letters, doi:10.7185/geochemlet.1831
  9. Deschamps, F.,  Duchêne, S., de Sigoyer, J.,  Bosse, V.,  Benoit, Vanderhaeghe, M., 2018, Coeval mantle-derived and crust-derived magmas forming two neighbouring plutons in the Songpan Ganze accretionary orogenic wedge (SW China), Journal of Petrology, doi:10.1093/petrology/egy007
  10. Ferriss, E., Plank, T., Newcomb, M., Walker, D., Hauri, E., 2018, Rates of dehydration of olivines from San Carlos and Kilauea Iki, GCA, doi:10.1016/j.gca.2018.08.050
  11. Finlayson V., Konter, J., Konrad, A., Koppers, A., Jackson, M., Rooney, T., 2018, Sr–Pb–Nd–Hf isotopes and 40Ar/39Ar ages reveal a Hawaii–Emperor-style bend in the Rurutu hotspot, EPSL, doi:10.1016/j.epsl.2018.08.020
  12. Frueh-Green, G., Orcutt, B., Roumejon, S., Lilley, M., Morono, Y., Cotterill, C., Green, S., Escartin, J., John, B., McCaig, A., Cannat, M., Menez, B., Schwarzenbach, E., Williams, M., Lang, S., Schrenk, M., Brazelton W., Bilenker, L., 2018, Magmatism, serpentinization and life: Insights through drilling the Atlantis Massif (IODP Expedition 357), Lithos, doi: 10.1016/j.lithos.2018.09.012
  13. Garber, J., Maurya, S., Hernandez, J-A., Duncan, M., Zeng, L., Zhang, H., Faul, U., McCammon, C., Montagner, J-P., Moresi, L., Romanowicz, B., Rudnick, R., Stixrude, L., 2018, Multidisciplinary constraints on the abundance of diamond and eclogite in the cratonic lithosphere, G-Cubed, doi:10.1029/2018GC007534
  14. Gomez-Tuena, A.,Cavazos-Tovar, J., Parolari, M., Straub, S., Espinasa-Perena, R.,2018, Geochronological and geochemical evidence of continental crust ‘relamination’ in the origin of intermediate arc magmas, Lithos, doi: 10.1016/j.lithos.2018.10.005
  15. Green, 2018, Constraining Magma Evolution mechanisms along the Galapagos Spreading Center between 102 W and 82 W through trace element Geochemistry, BS Thesis, The Ohio State University,
  16. Grove, M., Brown, S., 2018, Magmatic processes leading to compositional diversity in igneous rocks: Bowen (1928) revisited, AJS, doi:10.2475/01.2018.02
  17. Hanley J., Koga K., 2018,  Halogens in Terrestrial and Cosmic Geochemical Systems: Abundances, Geochemical Behaviors, and Analytical Methods. In: Harlov D., Aranovich L. (eds) The Role of Halogens in Terrestrial and Extraterrestrial Geochemical Processes. Springer Geochemistry. Springer, Cham, doi:10.1007/978-3-319-61667-4_2.
  18. Hara, T., et al., 2018, In-situ Sr-Pb isotope geochemistry of lawsonite: A new method to investigate slab-fluids, Lithos, doi:10.1016/j.lithos.2018.09.001
  19. Haraguchi, S., Ueki, K, Yoshida, K., Kuwatani, T., Mohaned, M., Horiuchi, S., Iwamori, H., 2018, Geochemical database of Japanese islands for basement rocks, Geological Magazine, doi:10.5575/geosoc.2018.0027
  20. Homrighausen, S., Hoernle, K., Geldmacher, J., Wartho, J-A., Portnyagin, M., Werner, R., can den Bogaards, P., Garbe-Schoenberg,D., 2018, Unexpected HIMU-type late-stage volcanism on the Walvis Ridge, EPSL, doi: 10.1016/j.epsl.2018.03.049
  21. Homrighausen, S., Hoernle, K., Hauff, F., Gedlnacher, J., Wartho, J-A., van den Bogaard, P.,Garbe-Schoendberg, D., 2018, Global distribution of the HIMU end member: Formation through Archean plume-lid tectonics, Earth Science Reviews, vol 182, doi:10.1016/j.earscirev.2018.04.009
  22. Homrighausen, S., Hoernle, K., Hauff, F., Wartho, J-A., van den Bogaard, P., Garbe-Scheonberg, D., 2018, New age and geochemical data from the Walvis Ridge: The temporal and spatial diversity of South Atlantic intraplate volcanism and its possible origin, GCA, doi: 10.1016/j.gca.2018.09.002
  23. Iwamori, H., Nakamura, H., Yoshida, M., Nakagawa, T., Ueki, K., Nakao, A., Nishizawa, T., Haraguchi, S., 2018, Trace-element characteristics of east–west mantle geochemical hemispheres, Comptes Rendus Geoscience, doi:10.1016/j.crte.2018.09.007
  24. Jiao, S., Zhang, Q., Zhou, Y., Cgen, W., Liu, X., Gopalakrishnan, G., 2018, Progress and challenges of big data research on petrology and geochemistry, Solid Earth Sciences, doi:10.1016/j.sesci.2018.06.002
  25. Koepke, J., Botchamikov, R., Natland, J., 2018, Crystallization of late-stage MORB under varying water activities and redox conditions: Implications for the formation of highly evolved lavas and oxide gabbro in the ocean crust, Lithos, doi:10.1016/j.lithos.2018.10.001
  26. Larrea, P.,Widom, E., Siebe, C., Salinas, S., Kuentz, D., 2018, A re-interpretation of the petrogenesis of Paricutin volcano: Distinguishing crustal contamination from mantle heterogeneity, Chemical Geology, doi:10.1016/j.chemgeo.2018.10.026
  27. Leuthold, J., Lissenberg, C., O'Driscoll, B., Karakas, O., Falloon, T., Klimentyeva, D., Ulmer, P., 2018, Partial Melting of Lower Oceanic Crust Gabbro: Constraints From Poikilitic Clinopyroxene Primocrysts, Frontiers in Earth Science, doi:10.3389/feart.2018.00015
  28. Li, B., Shi, X., Wang, J., Yan, Q., Liu, C., 2018, Tectonic environments and local geologic controls of potential hydrothermal fields along the Southern Mid-Atlantic Ridge (12–14°S), Journal of Marine Systems, doi:10.1016/j.jmarsys.2018.02.003
  29. Li, Y., Wang, G., Santosh, M., Wang, J., Dong, P. Li, H., 2018, Supra-subduction zone ophiolites from Inner Mongolia, North China: Implications for the tectonic history of the southern Central Asian Orogenic Belt, Gondwana Res., doi:10.1016/
  30. Lund, D., Seely, E., Asimow, P., Lewis, M., McCart, S., Mudahy, A., 2018, Anomalous Pacific-Antarctic Ridge volcanism precedes glacial Termination 2, G-Cubed, doi:10.1029/2017GC007341
  31. Manuella, F., Scribano, V., Carbone, F., 2018, Abyssal serpentinites as gigantic factories of marine salts and oil, Marine and Petroleum Geology, doi:10.1016/j.marpetgeo.2018.03.026
  32. McNamara, A.K., 2018, A review of large low shear velocity provinces and ultra low velocity zones, Tectonophysics, doi:10.1016/j.tecto.2018.04.015
  33. Melnik, O., Bindeman, I., 2018 Modeling of trace elemental zoning patterns in accessory minerals with emphasis on the origin of micrometer-scale oscillatory zoning in zircon. American Mineralogist, doi:10.2138/am-2018-6182
  34. Menke, W.. 2018, Chapter 10: Factor Analysis, Geophysical Data Analysis (Forth Edition), pp.207-222
  35. Moore,D., McLaughlin, R., Lienkaemper, J., 2018, Serpentinite-rich Gouge in a Creeping Segment of the Bartlett Springs Fault, Northern California: Comparison with SAFOD and Implications for Seismic Hazard, Tectonics, doi: 10.1029/2018TC005307
  36. Mukhopadhyay, R., Ghosh, A., Iher, S., 2018, Chapter 3: Volcanics, The Indian Ocean Nodule Field (second Edition), pp.71-46, doi;10.1016/B978-0-12-805474-1.00003-8
  37. Ou, Q., Wang, Q., Wuman, D., Zhang, C., Hao, L, Dan, W., Jiang, Z., Wu, F., Zhang, H., Xia, X., Ma, L., Long, X., 2018, Postcollisional delamination and partial melting of enriched lithospheric mantle: Evidence from Oligocene (ca. 30 Ma) potassium-rich lavas in the Gemuchaka area of the central Qiangtang Block, Tibet, GSA Bulletin, doi:10.1130/B31911.1
  38. Putirka, K., Tao, Y., K.R. Hari, M. R. Perfit, M. G. Jackson, R. Arevalo; The mantle source of thermal plumes: Trace and minor elements in olivine and major oxides of primitive liquids (and why the olivine compositions don't matter). American Mineralogist ; 103 (8): 1253–1270. doi:
  39. Ranaweera, L., Ota, T., Moriguti, T., Tanaka, R., Nakamura, E., 2018, Circa 1 Ga sub-seafloor hydrothermal alteration imprinted on the Horoman peridotite massif, Scientific Reports, doi:10.1038/s41598-018-28219-x
  40. Roubinet, C., Moreira, M., 2017, Atmospheric noble gases in Mid-Ocean Ridge Basalts: Identification of atmospheric contamination processes, GCA, doi:10.1016/j.gca.2017.10.027
  41. Saccani, E., Dilek, Y., Photiades, A., 2018, Time-progressive mantle-melt evolution and magma production in a Tethyan marginal sea: A case study of the Albanide-Hellenide ophiolites, doi:10.1130/L602.1
  42. Sanfilippo, A., Dick, H., Marschall, H., Lissenberg, C., Urann, B., 2018, Emplacement and high‐temperature evolution of gabbros of the 16.5 °N oceanic core complexes (Mid‐Atlantic Ridge): insights into the compositional variability of the lower oceanic crust, G-Cubed, doi: 110.1029/2018GC007512
  43. Secchiari, A., Montanini, A., Bosch, D. et al., 2018, The contrasting geochemical message from the New Caledonia gabbronorites: insights on depletion and contamination processes of the sub-arc mantle in a nascent arc setting Contrib Mineral Petrol 173: 66. doi: 10.1007/s00410-018-1496-8
  44. Shervais, J., Reagan, M., Haugen, E., Almeev, R., Pearce, J., Prytulak, J., Ryan, J., Whattam, S., Godard, M., Chapman, T., Li, H., Kurz, W., Nelson, W., Heaton, D., Kirchenbaur, M., Shimizu, K., Sakuyama, T., Li , Y., Vetter, S., 2018, Magmatic Response to Subduction Initiation, Part I: Forearc basalts of the Izu‐Bonin Arc from IODP Expedition 352, G-Cubed, doi: 10.1029/2018GC007731
  45. Sisson, T.W. & Kelemen, P.B., 2018, Near-solidus melts of MORB + 4 wt% H2O at 0.8–2.8 GPa applied to issues of subduction magmatism and continent formation Contrib Mineral Petrol 173: 70. doi:10.1007/s00410-018-1494-x
  46. Triantafyllou, A., Berger, J., Baele, J., Bruguier, O., Diot, H., Ennih, N., et al., 2018, Intra-oceanic arc growth driven by magmatic and tectonic processes recorded in the Neoproterozoic Bougmane arc complex (Anti-Atlas, Morocco). Precambrian Research, doi:10.1016/j.precamres.2017.10.022
  47. Varas-Reus, M., Garrido, C., Marchesi, C., Bosch, D., Hidas, K., 2018 ,Genesis of Ultra-High Pressure Garnet Pyroxenites in Orogenic Peridotites and its Bearing on the Compositional Heterogeneity of the Earth’s Mantle, GCA, doi:10.1016/j.gca.2018.04.033
  48. Vigneresse, JL. & Truche, L. Chemical descriptors for describing physico-chemical properties with applications to geosciencesJ Mol Model (2018) 24: 231. doi:10.1007/s00894-018-3770-0
  49. Voynets, A., Kostitsyn, Y., Pevzner, M., Goltsman, Y. Perepelov, 2018, Sr-Nd isotopic composition of Neogene-Quaternary volcanic rocks of the Sredinny Range, Kamchatka: Implications for magma generation in the back-arc, 10th Biannual Workshop on Japan-Kamchatka-Alaska Subduction Processes (JKASP-2018),
  50. Ware, B., Jourdan, F., Merle, R., Chiaradia, M., Hodges, K., 2018, The Kalkarindji Large Igneous Province, Australia: Petrogenesis of the oldest and most compositionally homogenous province of the Phanerozoic, Journal of Petrology, doi:10.1093/petrology/egy040
  51. Wei, Y., Mukasa, S., Zheng, J., Fahnestock, M., Bryce, J., 2018, Phanerozoic lower crustal growth from heterogeneous mantle beneath the North China Craton: Insights from the diverse Hannuoba pyroxenite xenoliths, Lithos, doi:10.1016/j.lithos.2018.11.001
  52. Winslow, H., 2018, A study of Pleistocene volcano Manantial Pelado, Chile: Unique access to a long history of primitive magmas in the thickened crust of the Southern Andes, Master's Thesis, University of Nevada, Reno, 113 pp.,
  53. Xia, L., Lia, X., 2018, Basalt geochemistry as a diagnostic indicator of tectonic setting, Gondwana Research, doi:10.1016/
  54. Yao, J-H., Zhu, W-G., Li, C., Zhong, H., Bai, Z-J, Ripley, E., Li, C., 2018, Petrogenesis and Ore Genesis of the Lengshuiqing Magmatic Sulfide Deposit in Southwest China: Constraints from Chalcophile Elements (PGE, Se) and Sr-Nd-Os-S Isotopes, Economic Geology, doi:10.5382/econgeo.2018.4566
  55. Yoshida, K., Kuwatani, T., Yasumoto, A.,Haraguchi, S.,Ueki, K.,Iwamori, H., 2018, GEOFCM: a new method for statistical classification of geochemical data using spatial contextual information, J. Mineralological and Petrological Sciences, doi:10.2465/jmps.171127
  56. Yu, X., Zeng, G., Chen, L-H., Wang, X-J., Liu, J-Q., Xie, L-W, Yang, T., 2018, Evidence for rutile-bearing eclogite in the mantle sources of the Cenozoic Zhejiang basalts, eastern China, Lithos, doi:10.1016/j.lithos.2018.11.003
  57. Yu, Y., Sun, M., Yuan, C., Zhao, G., Huang, X-L, Rojas-Agramonte, Y., Chen, Q., 2018, Evolution of the middle Paleozoic magmatism in the Chinese Altai: Constraints on the crustal differentiation at shallow depth in the accretionary orogen, Journal of Asian Earth Sciences, doi:10.1016/j.jseaes.2018.07.026
  58. Zhang, G., Luo, Q., Zhao, J., Jackson, M., Guo, L., Zhong, L., 2018 Geochemical nature of sub-ridge mantle and opening dynamics of the South China Sea. Earth and Planetary Science Letters, doi:10.1016/j.epsl.2018.02.040
  59. Zhang, H., Zhu, Y-F., Geology and geochemistry of pillow basalt in the Huilvshan region (west Junggar, China): Implications for magma source and tectonic setting, Can J Earth Sci, doi:10.1139/cjes-2018-0090
  60. Zhang, W., Zeng, Z., Cui, L., Yin, X., 2018, Geochemical Constrains on MORB Composition and Magma Sources at East Pacific Rise Between 1°S and 2°S, J. Ocean Univ. China, doi:10.1007/s11802-018-3223-5


  1. Alemayehu M, Zhang H-, Aulbach S. Persistence of fertile and hydrous lithospheric mantle beneath the northwestern Ethiopian plateau: Evidence from modal, trace element and Sr-Nd-Hf isotopic compositions of amphibole-bearing mantle xenoliths. Lithos. 2017; 284-285, doi:10.1016/j.lithos.2017.04.021
  2. Aulbach S, Jacob DJ, Cartigny P, Stern RA, Simonetti SS, Viljoen KS. Eclogite xenoliths from Orapa: Ocean crust recycling, mantle metasomatism and carbon cycling at the western Zimbabwe craton margin. Geochimica et Cosmochimica Acta. 2017; 213, doi:10.1016/j.gca.2017.06.038
  3. Bakke VN. Bakke,Volcanic rocks at the Møre Marginal High: geochemistry, petrogenesis and emplacement mechanisms.. Vol M. Sci. Bergen: University of Bergen;  2017,
  4. Baziotis I, Economou-Eliopoulos M, Asimow PD. Ultramafic lavas and high-Mg basaltic dykes from the Othris ophiolite complex, Greece. Lithos. 2017; 288-289, doi:10.1016/j.lithos.2017.07.015
  5. Bonamici C, Kinman W, Fournelle J, Zimmer M, Pollington A, Rector K. A geochemical approach to constraining the formation of glassy fallout debris from nuclear tests. Contributions to Mineralogy and Petrology. 2017; 172(2), doi:10.1007/s00410-016-1320-2
  6. Borreggine M, Myhre SE, Mislan AK, Deutsch C, Davis CV. A database of paleoceanographic sediment cores from the North Pacific, 1951–2016. Earth System Science Data. 2017; 9(2):739-49, doi:10.5194/essd-9-739-2017
  7. Choi H-, Choi SH, Schiano P, Cho M, Cluzel N, Devidal J-, et al. Geochemistry of olivine-hosted melt inclusions in the Baekdusan (Changbaishan) basalts: Implications for recycling of oceanic crustal materials into the mantle source. Lithos. 2017; 284-285, doi: 10.1016/j.lithos.2017.04.006
  8. Cousens B, Weis D, Constantin M, Scott S. Radiogenic isotopes in enriched mid-ocean ridge basalts from explorer ridge, northeast pacific ocean. Geochimica et Cosmochimica Acta. 2017; 213, doi:/10.1016/j.gca.2017.06.032
  9. Dokuz A, Aydincakir E, Kandemir R, Karsli O, Siebel W, Derman A, et al. Late Jurassic Magmatism and Stratigraphy in the Eastern Sakarya Zone, Turkey: Evidence for the Slab Breakoff of Paleotethyan Oceanic Lithosphere. The Journal of Geology. 2017; 125(1), doi:10.1086/689552
  10. Dumond G, Williams ML, Baldwin JA, Jercinovic MJ. Backarc origin for Neoarchean ultrahigh-temperature metamorphism, eclogitization, and orogenic root growth. Geology. 2017; 45(10):943-6, doi:10.1130/G39254.1
  11. Dygert N, Kelemen, P., Liang Y. Spatial variations in cooling rate in the mantle section of the Samail ophiolite in Oman: Implications for formation of lithosphere at mid-ocean ridges. EPSL. 2017; 465(1), doi:10.1016/j.epsl.2017.02.038
  12. Ferracutti G, Bjerg E, Hauzenberger C, Mogessie A, Cacace F, Asiain L. Meso to Neoproterozoic layered mafic-ultramafic rocks from the Virorco back-arc intrusion, Argentina. Journal of South American Earth Sciences. 2017; 79, doi:10.1016/j.jsames.2017.09.016
  13. Garcon M, Carlson R, Shirey S, Arndt N, Horan M, Mock T. Erosion of Archean continents: The Sm-Nd and Lu-Hf isotopic record of Barberton sedimentary rocks. G-Cubed. 2017; 206, doi:10.1016/j.gca.2017.03.006
  14. Greber ND, Dauphas N, Bekker A, Ptáček MP, Bindeman IN, Hofmann A. Titanium isotopic evidence for felsic crust and plate tectonics 3.5 billion years ago. Science. 2017; 3575843(6357):1271-4, doi:10.1126/science.aan8086
  15. Harrison L, Weis D, Garcia M. The link between Hawaiian mantle plume composition, magmatic flux, and deep mantle geodynamics. EPSL. 2017; 463, doi:10.1016/j.epsl.2017.01.027
  16. Heinonen JS, Fusswinkel T. High Ni and low Mn/Fe in olivine phenocrysts of the Karoo meimechites do not reflect pyroxenitic mantle sources. Chemical Geology. 2017; 467,doi:10.1016/j.chemgeo.2017.08.002
  17. Hong T, Xu X-, You J, Wu C, Li H, Ke Q. Cu and Mo re-enrichment during ductile deformation: A case study of the Yuleken porphyry Cu deposit, Eastern Junggar, NW China. Journal of Asian Earth Sciences. 2017, doi:10.1016/j.jseaes.2017.12.004
  18. Hong L-, Zhang Y-, Xu Y-, Ren Z-, Ma Q, Xie W. Hydrous orthopyroxene-rich pyroxenite source of the Xinkailing high magnesium andesites, Western Liaoning: Implications for the subduction-modified lithospheric mantle and the destruction mechanism of the North China Craton. Lithos. 2017; 282-283, doi:10.1016/j.lithos.2017.02.014
  19. Huang S, Zheng YF. Mantle geochemistry: Insights from ocean island basalts. Science China Earth Sciences. 2017, doi:10.1007/s11430-017-9090-4
  20. Hwang L, Fish A, Soito L, Smith MK, Kellogg LH. Software and the Scientist: Coding and Citation Practices in Geodynamics. Earth and Space Science. 2017; 4, doi:10.1002/2016EA000225
  21. Iwamori H, Yoshida K, Nakamura H, Kuwatani T, Hamada M, Haraguchi S, et al. Classification of geochemical data based on multivariate statistical analyses: Complementary roles of cluster, principal component, and independent component analyses. G-Cubed. 2017; 18(3), doi:10.1002/2016GC006663
  22. Janny P, Kirchner M, Ogungbuyi P, Harris C, BELL D. Geochemistry of the Namaqualand, Bushmanland and Warmbad melilitite and kimberlite provinces of South Africa and Namibia: the southern extension of the African kimberlitic megalineament.;  2017, doi:10.29173/ikc3982
  23. Keathley DE. Geochemical Characterization of a Feeder-Dike System in the Seiland Igneous Complex, Northern Norway: Implications for Geotectonic Environment of Emplacement. Vol MS. Texas Tech University;  2017.
  24. Kimura J, Gill JB, van Keken P, Kawabata H, Skora S. Origin of geochemical mantle components: Role of spreading ridges and thermal evolution of mantle. G-Cubed. 2017; 18(2), doi:10.1002/2016GC006696
  25. Kimura J-, Sakuyama T, Miyazaki T, Vaglarov BS, Fukao Y, Stern RJ. Plume - stagnant slab - lithosphere interactions: Origin of the late Cenozoic intra-plate basalts on the East Eurasia margin. Lithos. 2017; 300-301, doi:10.1016/j.lithos.2017.12.003
  26. Klügel A, Galipp K, Hoernle K, Hauff F, Groom S. Geochemical and volcanological evolution of La Palma, Canary Islands. Journal of Petrology. 2017, doi:10.1093/petrology/egx052
  27. Liu B, Liang Y. The prevalence of kilometer-scale heterogeneity in the source region of MORB upper mantle. Science Advances. 2017; 3(11), doi:10.1126/sciadv.1701872
  28. Liu C, Knoll AH, Hazen RM. Geochemical and mineralogical evidence that Rodinian assembly was unique. Nature Communications. 2017; (1), doi:10.1038/s41467-017-02095-x
  29. Liu X, Xiao W, Xu J, Castillo P, Shi Y. Geochemical signature and rock associations of ocean ridge-subduction: Evidence from the Karamaili Paleo-Asian ophiolite in east Junggar, NW China. Gondwana Research. 2017; 48, doi:10.1016/
  30. Luo Q, Zhang GL. Control of subduction rate on Tonga-Kermadec arc magmatism. Chinese Journal of Oceanology and Limnology. 2017; 54, doi:10.1007/s00343-018-7026-8
  31. Malatesta C, Federico L, Crispini L, Capponi G. Fluid-controlled deformation in blueschist-facies conditions: plastic vs brittle behaviour in a brecciated mylonite (Voltri Massif, Western Alps, Italy. Geological Magazine. 2017:1-21, doi:10.1017/S0016756816001163
  32. Marschall H, Wanless D, Shimizu N, Pogge von Strandmann P, Elliot T, Monteleone B. The boron and lithium isotopic composition of mid-ocean ridge basalts and the mantle. GCA. 2017; 207(102), doi:10.1016/j.gca.2017.03.028
  33. McCubbin FM, Vander Kaaden KE, Peplowski PN, Bell AS, Nittler LR, Boyce JW, et al. A low O/Si ratio on the surface of Mercury: Evidence for silicon smelting? Journal of Geophysical Research: Planets. 2017; 122. 10.1002/2017JE005367
  34. Melekestseva IY, Maslennikov VV, Tretyakov GA, Nimis P, Beltenev VE, Rozhdestvenskaya II, et al. Gold- and Silver-Rich Massive Sulfides from the Semenov-2 Hydrothermal Field, 13°31.13N, Mid-Atlantic Ridge: A Case of Magmatic Contribution? Economic Geology. 2017; 112(4):741-73, doi:10.2113/econgeo.112.4.741
  35. Migdisova NA, Sobolev AV, Sushchevskaya NM, Dubinin EP, Kuz’min DV. Mantle heterogeneity at the Bouvet triple junction based on the composition of olivine phenocrysts. Russian Geology and Geophysics. 2017; 58(11):1289-304, doi:10.1016/j.rgg.2017.02.004
  36. Moyen J-, Laurent O. Archaean tectonic systems: A view from igneous rocks. Lithos. 2017, doi:10.1016/j.lithos.2017.11.038.
  37. Olierook H, Merle R, Jourdan F. Toward a Greater Kerguelen Large Igneous Province: Evolving mantle source contributions in and around the Indian Ocean. Lithos. 2017; 282-283, doi:10.1016/j.lithos.2017.03.007
  38. Owen-Smith TM, Ashwal LD, Sudo M, Trumbull RB. Age and Petrogenesis of the Doros Complex, Namibia, and Implications for Early Plume-derived Melts in the Parana-Etendeka LIP. Journal of Petrology. 2017, doi:10.1093/petrology/egx021
  39. Plissart G, Monnier C, Diot H, Mărunţiu M, Berger J, Triantafyllou A. Petrology, geochemistry and Sm-Nd analyses on the Balkan-Carpathian Ophiolite (BCO − Romania, Serbia, Bulgaria): remnants of a Devonian back-arc basin in the easternmost part of the Variscan domain. Journal of Geodynamics. 2017; 105, doi:10.1016/j.jog.2017.01.001
  40. Reid MR, Schleiffarth KW, Cosca MA, Delph JR, Blichert-Toft J, Cooper KM. Shallow melting of MORB-like mantle under hot continental lithosphere, Central Anatolia. Geochemistry, Geophysics, Geosystems. 2017; 18, doi:10.1002/2016GC006772
  41. Ribeiro LP, Martins S, Hildenbrand A, Madureira P, Mata J. The genetic link between the Azores Archipelago and the Southern Azores Seamount Chain (SASC): The elemental, isotopic and chronological evidences. Lithos. 2017; 294-295, doi:10.1016/j.lithos.2017.08.019
  42. Scott J. Towards a Petrologically Constrained Thermal Model of Mid-Ocean Ridges. Vol PhD. The Ohio State University;  2017.
  43. Suo Y, Li S, Li X, Zhang Z, Ding D. The potential hydrothermal systems unexplored in the Southwest Indian Ocean. Marine Geophysical Research. 2017, doi:10.1007/s11001-016-9300-5
  44. Ueki, K., Hino, H., Kuwatani, T., 2017, Geochemical discrimination and characteristics of
    magmatic tectonic settings; a machine learning-based approach, ArXiv, doi: 10.1029/2017GC007401
  45. Voigt M, Coogan LA, von der Handt A. Experimental investigation of the stability of clinopyroxene in mid-ocean ridge basalts: The role of Cr and Ca/Al. Lithos. 2017; 274-275, doi:10.1016/j.lithos.2017.01.003
  46. Wang X, Xu J, Liu M, Wei Z, Bu W, Hong T. An Ontology-Based Approach for Marine Geochemical Data Interoperation. IEEE Access. 2017; 5:13364-71, doi: 10.1109/ACCESS.2017.2724641
  47. Wang H, Xiaohu L, Chu F, Li Z, Wang J, Yu X, et al. Mineralogy, geochemistry, and Sr-Pb isotopic geochemistry of hydrothermal massive sulfides from the 15.2°S hydrothermal field, Mid-Atlantic Ridge. J Marine Systems. 2017; 180, doi:10.1016/j.jmarsys.2017.02.010
  48. Wanless VD, Behn MD. Spreading rate-dependent variations in crystallization along the global mid-ocean ridge system. Geochemistry, Geophysics, Geosystems. 2017;18, doi:10.1002/2017GC006924
  49. Wibowo H. Petrological and Geochemical Study of Sundoro Volcano, Central Java, Indonesia : Temporal Variation in Differentiation and Source Processes in the Growth of an Individual Volcano. Vol PhD. Hokkaido;  2017, doi:10.14943/doctoral.k12699
  50. Wolfson-Schwehr M, Boettcher MS, Behn MD. Thermal segmentation of mid-ocean ridge-transform faults. Geochemistry, Geophysics, Geosystems. 2017; 18(9):3405-18, doi:10.1002/2017GC006967
  51. Xu Y, Liu C-, Chen Y, Guo S, Wang J-, Sein K. Petrogenesis and tectonic implications of gabbro and plagiogranite intrusions in mantle peridotites of the Myitkyina ophiolite, Myanmar. Lithos. 2017, doi:10.1016/j.lithos.2017.04.014
  52. Xu Z, Zheng Y-. Continental basalts record the crust-mantle interaction in oceanic subduction channel: A geochemical case study from eastern China. Journal of Asian Earth Sciences. 2017; 145, doi:10.1016/j.jseaes.2017.03.010
  53. Yang AY, Zhao T-, Zhou M-, Deng X-. Isotopically enriched N-MORB: A new geochemical signature of off-axis plume-ridge interaction-A case study at 50°28E, Southwest Indian Ridge. Journal of Geophysical Research: Solid Earth. 2017; 122(1):191-213, doi:10.1002/2016JB013284
  54. Yang S. Mantle source compositions by LA-ICP-MS analyses of volcanic glasses from Hawaii and the mid-ocean ridges. Vol PhD. Florida State University;  2017,
  55. Yang W-, Niu H-, Hollings P, Zurevinski SE, Li N-. The role of recycled oceanic crust in the generation of alkaline A-type granites. Journal of Geophysical Research: Solid Earth. 2017, doi:10.1002/2017JB014921
  56. Yu Y, Sun M, Huang X-, Zhao G, Li P, Long X, et al. Sr-Nd-Hf-Pb isotopic evidence for modification of the Devonian lithospheric mantle beneath the Chinese Altai. Lithos. 2017; 284-285, doi:10.1016/j.lithos.2017.04.004
  57. Zhang C, Wang L-, Marks M, France L, Koepke J. Volatiles (CO2, S, F, Cl, Br) in the dike-gabbro transition zone at IODP Hole 1256D: Magmatic imprint versus hydrothermal influence at fast-spreading mid-ocean ridge. Chemical Geology. 2017; 459, doi:10.1016/j.chemgeo.2017.04.002
  58. Zhang G-, Chen L-, Jackson MG, Hofmann AW. Evolution of carbonated melt to alkali basalt in the South China Sea. Nature Geoscience. 2017, doi:10.1038/ngeo2877
  59. Zhang H, Zhu Y. Geochronology and geochemistry of the Huilvshan gabbro in west Junggar (NW China): Implications for magma process and tectonic regime. Mineralogy and Petrology. 2017, doi:10.1007/s00710-017-0543-x
  60. Zhang Y, Zeng ZG, Li X, Yin X, Wang X, Chen S. High-potassium volcanic rocks from the Okinawa Trough: Implications for a cryptic potassium-rich and DUPAL-like source. Geological Journal. 2017, doi:10.1002/gj.3000
  61. Zhao X, Cao HH, Mi X, Evans NJ, Qi YH, Huang F, et al. Combined iron and magnesium isotope geochemistry of pyroxenite xenoliths from Hannuoba, North China Craton: implications for mantle metasomatism. Contributions to Mineralogy and Petrology. 2017; 172(40), doi:10.1007/s00410-017-1356-y
  62. Zhou Q, Liu Z, Lai Y, Wang G-, Liao Z, Li Y-, et al. Petrogenesis of mafic and felsic rocks from the Comei large igneous province, South Tibet: Implications for the initial activity of the Kerguelen plume. GSA Bulletin. 2017, doi:10.1130/b31653.1
  63. van der Zwan FM, Devey CW, Hansteen TH, Almeev RR, Augustin N, Frische M, et al. Lower crustal hydrothermal circulation at slow-spreading ridges: evidence from chlorine in Arctic and South Atlantic basalt glasses and melt inclusions. Contributions to Mineralogy and Petrology. 2017, doi:10.1007/s00410-017-1418-1


  1. Alemayehu M, Zhang H-, Sakyi PA. Nature and evolution of lithospheric mantle beneath the southern Ethiopian rift zone: evidence from petrology and geochemistry of mantle xenoliths. International Journal of Earth Sciences. 2016, doi:10.1007/s00531-016-1342-z
  2. Angiboust S, Hyppolito T, Glodny J, Cambeses A, Garcia-Casco A, Calderón M, et al. Hot subduction in the middle Jurassic and partial melting of oceanic crust in Chilean Patagonia. Gondwana Research. 2016; 42, doi:10.1016/
  3. Aulbach S, Jacob DE. Major- and trace-elements in cratonic mantle eclogites and pyroxenites reveal heterogeneous sources and metamorphic processing of low-pressure protoliths. Lithos. 2016; 262, doi:10.1016/
  4. Aulbach S, Massuyeau M, Gaillard F. Origins of cratonic mantle discontinuities: A view from petrology, geochemistry and thermodynamic models. Lithos. 2016; 268, doi:10.1016/j.lithos.2016.11.004
  5. Chatterjee R, Lassiter JC. 186Os/188Os variations in upper mantle peridotites: Constraints on the Pt/Os ratio of primitive upper mantle, and implications for late veneer accretion and mantle mixing timescales. Chemical Geology. 2016; 442:11-22, doi:10.1016/j.chemgeo.2016.08.033
  6. Chavrit D, Burgess R, Sumino H, Teagle DA, Droop G, Shimizu A, et al. The contribution of the hydrothermal alteration of the ocean crust to the deep halogen and noble gas cycles. Geochimica et Cosmochimica Acta. 2016; 183, doi:10.1016/j.gca.2016.03.014
  7. Chen L, Tang L, Yu X, Dong Y. Mantle source heterogeneity and magmatic evolution at Carlsberg Ridge (3.7°N): constrains from elemental and isotopic (Sr, Nd, Pb) data. Marine Geophysical Research. 2016, doi:10.1007/s11001-016-9292-1
  8. Cheng H, Zhou H, Yang Q, Zhang L, Ji F, Dick H. Jurassic zircons from the Southwest Indian Ridge. Scientific Reports. 2016; 6:26260, doi:10.1038/srep26260
  9. Coogan LA, Dosso SE. Quantifying Parental MORB Trace Element Compositions from the Eruptive Products of Realistic Magma Chambers: Parental EPR MORB are Depleted. Journal of Petrology. 2016:egw059, doi:10.1093/petrology/egw059
  10. Day JM. Evidence against an ancient non-chondritic mantle source for North Atlantic Igneous Province lavas. Chemical Geology. 2016; 440, doi:10.1016/j.chemgeo.2016.07.002
  11. Doucet LS, Mattielli N, Ionov DA, Debouge W, Golovin AV. Zn isotopic heterogeneity in the mantle: A melting control? Earth and Planetary Science Letters. 2016; 451:232-40, doi:10.1016/j.epsl.2016.06.040
  12. Duncan RA, Kent AJ, Thornber CR, Schlieder TD, Al-Amri AM. Timing and composition of continental volcanism at Harrat Hutaymah, western Saudi Arabia. Journal of Volcanology and Geothermal Research. 2016; 313, doi: 10.1016/j.jvolgeores.2016.01.010
  13. Escuder-Viruete J, Castillo-Carrión M. Subduction of fore-arc crust beneath an intra-oceanic arc: The high-P Cuaba mafic gneisess and amphibolites of the Rio San Juan Complex, Dominican Republic. Lithos. 2016; 262, doi:10.1016/j.lithos.2016.07.024
  14. Freymuth H, Ivko B, Gill J, Tamura Y. Thorium isotope evidence for melting of the mafic oceanic crust beneath the Izu arc. Geochimica et Cosmochimica Acta. 2016; 186, doi:10.1016/j.gca.2016.04.034
  15. Gao C, Dick HJ, Liu Y, Zhou H. Melt Extraction and Mantle Source at a Southwest Indian Ridge Dragon Bone Amagmatic Segment on the Marion Rise. Lithos. 2016; 246-247, doi:10.1016/j.lithos.2015.12.007
  16. Gao R, Lassiter JC, Barnes JD, Clague DA, Bohrson WA. Geochemical investigation of Gabbroic Xenoliths from Hualalai Volcano: Implications for lower oceanic crust accretion and Hualalai Volcano magma storage system. Earth and Planetary Science Letters. 2016; 442:162-72, doi:10.1016/j.epsl.2016.02.043
  17. Giovas CM, Kamenov GD, Fitzpatrick SM, Krigbaum J. Sr and Pb isotopic investigation of mammal introductions: Pre-Columbian zoogeographic records from the Lesser Antilles, West Indies. Journal of Archaeological Science. 2016; 69:39-53, doi:10.1016/j.jas.2016.03.006
  18. Gómez-Tuena A, Mori L, Straub SM. Geochemical and petrological insights into the tectonic origin of the Transmexican Volcanic Belt. Earth-Science Reviews. 2016,doi:10.1016/j.earscirev.2016.12.006
  19. Haase KM, Freund S, Beier C, Koepke J, Erdmann M, Hauff F. Constraints on the magmatic evolution of the oceanic crust from plagiogranite intrusions in the Oman ophiolite. Contributions to Mineralogy and Petrology. 2016; 171(5), doi:10.1007/s00410-016-1261-9
  20. Halldórsson SA, Barnes JD, Stefánsson A, Hilton DR, Hauri EH, Marshall EW. Subducted lithosphere controls halogen enrichments in the Iceland mantle plume source. Geology. 2016; 44(8):679-82, doi:10.1130/g37924.1
  21. van Heck HJ, Davies HJ, Elliott T, Porcelli D. Global-scale modelling of melting and isotopic evolution of Earth's mantle: melting modules for TERRA. Geoscientific Model Development. 2016; 9(4):1399-411, doi:10.5194/gmd-9-1399-2016
  22. Hoernle K, Schwindrofska A, Werner R, van den Bogaard P, Hauff F, Uenzelmann-Neben G, et al. Tectonic dissection and displacement of parts of Shona hotspot volcano 3500 km along the Agulhas-Falkland Fracture Zone. Geology. 2016, doi:10.1130/G37582.1
  23. Höfig T, Hoernle K, Hauff F, Frank M. Hydrothermal versus active margin sediment supply to the eastern equatorial Pacific over the past 23 million years traced by radiogenic Pb isotopes: Paleoceanographic and paleoclimatic implications. Geochimica et Cosmochimica Acta. 2016; 190, doi: /10.1016/j.gca.2016.05.003
  24. Huang S, Humayun M. Petrogenesis of High-CaO Lavas from Muna Kea, Hawaii: Constraints from Trace Element Abundances. Geochimica et Cosmochimica Acta. 2016; 185, doi: 10.1016/j.gca.2016.03.039
  25. Husen A, Kamenetsky VS, Everard J, Kamenetsky MB. Transition from ultra-enriched to ultra-depleted primary MORB melts in a single volcanic suite (Macquarie Island, SW Pacific): implications for mantle source, melting process and plumbing system. Geochimica et Cosmochimica Acta. 2016; 185, doi:10.1016/j.gca.2016.02.031
  26. Kusano Y, Umino S, Shinjo R, Ikei A, Adachi Y, Miyashita S, et al. Contribution of slab-derived fluid and sedimentary melt in the incipient arc magmas with development of the paleo-arc in the Oman Ophiolite. Chemical Geology. 2016; 449, doi:10.1016/j.chemgeo.2016.12.012
  27. Labidi J, Cartigny P. Negligible sulfur isotope fractionation during partial melting: Evidence from Garrett transform fault basalts, implications for the late-veneer and the hadean matte. Earth and Planetary Science Letters. 2016; 451:196-207, doi:10.1016/j.epsl.2016.07.012
  28. Lissenberg C, MacLeod C. A Reactive Porous Flow Control on Mid-ocean Ridge Magmatic Evolution. J Petrol. 2016; 57(11 & 12), doi:10.1093/petrology/egw074
  29. Liu C, Zhao G, Liu F, Shi J. Constraints of volcanic rocks of the Wutai complex (Shanxi Province, Northern China) on a giant late Neoarchean intra-oceanic arc system in the Trans-North China Orogen. Journal of Asian Earth Sciences. 2016; 123,doi:10.1016/j.jseaes.2016.04.006
  30. Lundstrom CC, Glazner AF. Silicic Magmatism and the Volcanic–Plutonic Connection. Elements. 2016; 12(2):91-6, doi:10.2113/gselements.12.2.91
  31. Ma Q, Xu Y-, Zheng J-, Sun M, Griffin WL, Wei Y, et al. High-Mg adakitic rocks and their complementary cumulates formed by crystal fractionation of hydrous mafic magmas in a continental crustal magma chamber. Lithos. 2016; 260, doi:10.1016/j.lithos.2016.05.024
  32. Mao Y-, Qin K-, Tang D-, Feng H-, Xue S-. Crustal contamination and sulfide immiscibility history of the Permian Huangshannan magmatic Ni-Cu sulfide deposit, East Tianshan, NW China. Journal of Asian Earth Sciences. 2016; 129, doi:10.1016/j.jseaes.2016.07.028
  33. McNutt M, Lehnert K, Hanson B, Nosek BA, Ellison AM, King JL. Liberating field science samples and data. Science. 2016; 351(6277):1024-6, doi: 10.1126/science.aad7048
  34. Mullen EK, Weis D, Marsh NB, Martindale M. Primitive arc magma diversity: New geochemical insights in the Cascade Arc. Chemical Geology. 2016; 448, doi:10.1016/j.chemgeo.2016.11.006
  35. Nicolle M, Jousselin D, Reisberg L, Bosch D, Stephant A. Major and trace element and Sr and Nd isotopic results from mantle diapirs in the Oman ophiolite: Implications for off-axis magmatic processes. Earth and Planetary Science Letters. 2016; 437, doi;10.1016/j.epsl.2015.12.005
  36. Niu Y. The Meaning of Global Ocean Ridge Basalt Major Element Compositions. J Petrol. 2016; 57(11 & 12), doi:10.1093/petrology/egw073
  37. Paquet M, Cannat M, Brunelli D, Hamelin C, Humler E. Effect of melt/mantle interactions on MORB chemistry at the easternmost Southwest Indian Ridge (61 to 67°E). Geochemistry, Geophysics, Geosystems. 2016; 17(11), doi:10.1002/2016GC006385
  38. Petrelli M, Perugini D. Solving petrological problems through machine learning: the study case of tectonic discrimination using geochemical and isotopic data. Contributions to Mineralogy and Petrology. 2016; 171(10), doi:10.1007/s00410-016-1292-2
  39. Prytulak J, Sossi PA, Halliday AN, Plank T, Savage PS, Woodhead JD. Stable vanadium isotopes as a redox proxy in magmatic systems? Geochemical Perspectives Letters. 2016:75-84, doi:10.7185/geochemlet.1708
  40. Rasoazanamparany C, Widom E, Siebe C, Guilbaud M-, Spicuzza MJ, Valley JW, et al. Temporal and compositional evolution of Jorullo volcano, Mexico: Implications for magmatic processes associated with a monogenetic eruption. Chemical Geology. 2016; 434, doi;10.1016/j.chemgeo.2016.04.004
  41. Regelous M, Weinzierl CG, Haase KM. Controls on melting at spreading ridges from correlated abyssal peridotite – mid-ocean ridge basalt compositions. Earth and Planetary Science Letters. 2016; 449:1-11, doi;10.1016/j.epsl.2016.05.017
  42. Ruzié-Hamilton L, Clay PL, Burgess R, Joachim B, Ballentine CJ, Turner G. Determination of halogen abundances in terrestrial and extraterrestrial samples by the analysis of noble gases produced by neutron irradiation. Chemical Geology. 2016; 437, doi;10.1016/j.chemgeo.2016.05.003
  43. Sager WW, Sano T, Geldmacher J. Formation and evolution of Shatsky Rise oceanic plateau: Insights from IODP Expedition 324 and recent geophysical cruises. Earth-Science Reviews. 2016; 159, doi:10.1016/j.earscirev.2016.05.011
  44. Schlindwein V, Schmid F. Mid-ocean-ridge seismicity reveals extreme types of ocean lithosphere. Nature. 2016; 535(7611):276-9,doi:10.1038/nature18277
  45. Schwindrofska A, Hoernle K, Hauff F, van den Bogaard P, Werner R, Garbe-Schönberg D. Origin of enriched components in the South Atlantic: Evidence from 40 Ma geochemical zonation of the Discovery Seamounts. Earth and Planetary Science Letters. 2016; 441:167-77, doi;10.1016/j.epsl.2016.02.041
  46. Secchiari A, Montanini A, Bosch D, Macera P, Cluzel D. Melt extraction and enrichment processes in the New Caledonia lherzolites: Evidence from geochemical and Sr-Nd isotope data. Lithos. 2016; 260, doi:10.1016/j.lithos.2016.04.030
  47. Sleeper JD, Martinez F, Arculus R. The Fonualei Rift and Spreading Center: Effects of ultraslow spreading and arc proximity on back-arc crustal accretion. Journal of Geophysical Research: Solid Earth. 2016, doi:10.1002/2016JB013050
  48. Strong DT, Turnbull RE, Haubrock S, Mortimer N. Petlab: New Zealand’s national rock catalogue and geoanalytical database. New Zealand Journal of Geology and Geophysics. 2016:1-7, doi:10.1080/00288306.2016.1157086
  49. Tang Q, Zhang Z, Li C, Wang Y, Ripley EM. Neoproterozoic subduction-related basaltic magmatism in the northern margin of the Tarim Craton: Implications for Rodinia reconstruction. Precambrian Research. 2016; 286:370-8, doi:10.1016/j.precamres.2016.10.012
  50. Tejada ML, Geldmacher J, Hauff F, Heaton D, Koppers AA, Garbe-Schönberg D, et al. Geochemistry and Age of Shatsky, Hess, and Ojin Rise seamounts: Implications for a connection between the Shatsky and Hess Rises. Geochimica et Cosmochimica Acta. 2016; 185, doi:10.1016/j.gca.2016.04.006
  51. Tunini L, Jiménez-Munt I, Fernandez M, Vergés J, Villaseñor A, Melchiorre M, et al. Geophysical-petrological model of the crust and upper mantle in the India-Eurasia collision zone. Tectonics. 2016; 35(7):1642-69, doi:10.1002/2016TC004161
  52. Wang X, Hong T, Xu J, Liu M, Liang H. Semantic Mediation of Metadata for Marine Geochemical Data Integration. In: the The 11th International Knowledge Management in Organizations ConferenceProceedings of the The 11th International Knowledge Management in Organizations Conference on The changing face of Knowledge Management Impacting Society - KMO '16. Hagen, GermanyNew York, New York, USA: ACM Press;  2016. p. 1-5, doi;10.1145/2925995.2926025
  53. Wang Z-, Liu S-, Liu J, Huang J, Xiao Y, Chu Z-, et al. Zinc isotope fractionation during mantle melting and constraints on the Zn isotope composition of Earth’s upper mantle. Geochimica et Cosmochimica Acta. 2016; 198, doi:10.1016/j.gca.2016.11.014
  54. Warren JM. Global Variations in Abyssal Peridotite Compositions. Lithos. 2016; 248-251, doi:10.1016/j.lithos.2015.12.023
  55. Waterton P, Pearson GD, Kjarsgaard B, Hulbert L, Locock A, Parman S, et al. Age, Origin, and Thermal Evolution of the ultra-fresh~1.9Ga Winnipegosis Komatiites, Manitoba, Canada. Lithos. 2016; 268-271, doi:10.1016/j.lithos.2016.10.033
  56. Weisler MI, Bolhar R, Ma J, St Pierre E, Sheppard P, Walter RK, et al. Cook Island artifact geochemistry demonstrates spatial and temporal extent of pre-European interarchipelago voyaging in East Polynesia. Proceedings of the National Academy of Sciences. 2016; 113(29):8150-5, doi: 10.1073/pnas.1608130113
  57. Weiss Y, Class C, Goldstein SL, Hanyu T. Key new pieces of the HIMU puzzle from olivines and diamond inclusions. Nature. 2016; 537, doi:10.1038/nature19113
  58. Xu Z, Zheng Y-, Zhao Z-. The origin of Cenozoic continental basalts in east-central China: Constrained by linking Pb isotopes to other geochemical variables. Lithos. 2016; 268-271, doi:10.1016/j.lithos.2016.11.006
  59. Zeng ZG, Ma Y, Chen S, Selby D, Wang X, Yin X. Sulfur and lead isotopic compositions of massive sulfides from deep-sea hydrothermal systems: Implications for ore genesis and fluid circulation. Ore Geology Reviews. 2016; 87, doi:10.1016/j.oregeorev.2016.10.014
  60. Zerda CL. An Integrated Petrological and Geochemical Approach to Understanding Magmatism, Along the East Pacific Rise. Vol Master of Science. The Ohio State University;  2016,!etd.send_file?accession=osu1471827298&disposition=inline
  61. Zhang G-, Li C. Interactions of the Greater Ontong Java mantle plume component with the Osbourn Trough. Scientific Reports. 2016; 6:37561, doi:10.1038/srep37561 (2016)
  62. Zhang GL. Compositional and temperature variations of the Pacific upper mantle since the Cretaceous. Acta Oceanologica Sinica. 2016; 35(4):19-25, doi:10.1007/s13131-016-0839-4
  63. Zhang JB, Liu Y, Ling WL, Gao S. Pressure-dependent compatibility of iron in garnet: insights into the origin of ferropicritic melt. Geochimica et Cosmochimica Acta. 2016; 197, doi:10.1016/j.gca.2016.10.047


  1. Beyer C, Frost DJ, Miyajima N. Experimental calibration of a garnet–clinopyroxene geobarometer for mantle eclogites. Contributions to Mineralogy and Petrology. 2015; 169(2), doi:10.1007/s00410-015-1113-z
  2. Brady JB. Assuring the future of mineralogy. American Mineralogist. 2015; 100(7):1337-40, doi:10.2138/am-2015-5164
  3. Cann JR, Smith DK, Escartin J, Schouten H. Tectonic evolution of 200 km of Mid-Atlantic Ridge over 10 million years-Interplay of volcanism and faulting. Geochemistry, Geophysics, Geosystems. 2015;16, doi:10.1002/2015GC005797
  4. Carbotte SM, Smith DK, Cannat M, Klein EM. Tectonic and magmatic segmentation of the Global Ocean Ridge System: a synthesis of observations. Geological Society, London, Special Publications. 2015, doi:10.1144/SP420.5
  5. Carter LB, Dasgupta R. Hydrous basalt–limestone interaction at crustal conditions: Implications for generation of ultracalcic melts and outflux of CO2 at volcanic arcs. Earth and Planetary Science Letters. 2015; 427:202-14, doi:10.1016/j.epsl.2015.06.053
  6. Condie K. Changing Tectonic Settings Through Time: Indiscriminate Use of Geochemical Discriminant Diagrams. Precambrian Research. 2015, doi:10.1016/j.precamres.2015.05.004
  7. Coogan LA, O’Hara MJ. MORB differentiation: In situ crystallization in replenished-tapped magma chambers. Geochimica et Cosmochimica Acta. 2015, doi:10.1016/j.gca.2015.03.010
  8. Cooper CM, Mittelstaedt E, Currie CA, van Wijk J, Kellogg LK, Hwang L, et al. Moving lithospheric modeling forward: Attributes of a community computer code. GSA Today. 2015:42-3, doi:10.1130/GSATG230GW.1
  9. Dekov VM, Lalonde SV, Kamenov GD, Bayon G, Shanks WC, Fortin D, et al. Geochemistry and mineralogy of a silica chimney from an inactive seafloor hydrothermal field (East Pacific Rise, 18°S). Chemical Geology. 2015, doi:10.1016/j.chemgeo.2015.09.017
  10. Delavault H, Chauvel C, Sobolev A, Batanova V. Combined petrological, geochemical and isotopic modeling of a plume source: Example of Gambier Island, Pitcairn chain. Earth and Planetary Science Letters. 2015; 426:23-35, doi:10.1016/j.epsl.2015.06.013
  11. Eason DE, Dunn RA. Petrogenesis and structure of oceanic crust in the Lau back-arc basin. Earth and Planetary Science Letters. 2015; 429:128-38, doi:10.1016/j.epsl.2015.07.065
  12. Ferreira Silva Da Cruz MI. Mineralogy and Geochemistry of contrasting hydrothermal systems on the AMOR: The Jan Mayen and Loki's Castle vent fields. Vol PhD. Universidade de Lisboa;  2015.
  13. Frey FA, Nobre Silva IG, Huang S, Pringle MS, Meleney PR, Weis D. Depleted components in the source of hotspot magmas: Evidence from the Ninetyeast Ridge (Kerguelen). Earth and Planetary Science Letters. 2015, doi:10.1016/j.epsl.2015.06.005
  14. Gannoun A, Burton KW, Day JM, Harvey J, Schiano P, Parkinson I. Highly Siderophile Element and Os Isotope Systematics of Volcanic Rocks at Divergent and Convergent Plate Boundaries and in Intraplate Settings. Reviews in Mineralogy and Geochemistry. 2015; 81(1):651-724, doi:10.2138/rmg.2016.81.11
  15. Garcia MO, Smith JR, Tree JP, Weis D, Harrison L, Jicha BR. Petrology, geochemistry, and ages of lavas from Northwest Hawaiian Ridge volcanoes. Geological Society of America Special Papers;  2015, doi:10.1130/2015.2511(01)
  16. Gillis KM, Coogan LA, Brant C. The role of sedimentation history and lithology on fluid flow and reactions in off-axis hydrothermal systems: A perspective from the Troodos ophiolite. Chemical Geology. 2015, doi:10.1016/j.chemgeo.2015.09.006
  17. Green DH, Falloon TJ. Mantle-derived magmas: intraplate, hot-spots and mid-ocean ridges. Science Bulletin. 2015; 60(22):1873-900, doi:10.1007/s11434-015-0920-y
  18. Grimes CB, Wooden JL, Cheadle MJ, John BE. “Fingerprinting” tectono-magmatic provenance using trace elements in igneous zircon. Contributions to Mineralogy and Petrology. 2015; 170(5-6), doi:10.1007/s00410-015-1199-3
  19. Hayes CT, Fitzsimmons JN, Boyle EA, McGee D, Anderson RF, Weisend R, et al. Thorium isotopes tracing the iron cycle at the Hawaii Ocean Time-series Station ALOHA. Geochimica et Cosmochimica Acta. 2015, doi: 10.1016/j.gca.2015.07.019
  20. Heinonen JS, Kurz MD. Low-3He/4He sublithospheric mantle source for the most magnesian magmas of the Karoo large igneous province. Earth and Planetary Science Letters. 2015, doi:10.1016/j.epsl.2015.06.030
  21. Hoernle K, Rohde J, Hauff F, Garbe-Schönberg D, Homrighausen S, Werner R, et al. How and when plume zonation appeared during the 132 Myr evolution of the Tristan Hotspot. Nature Communications. 2015; 6:7799, doi:10.1038/ncomms8799
  22. Hu Y, Teng F-, Zhang H-, Xiao Y, Su B-. Metasomatism-induced mantle magnesium isotopic heterogeneity: Evidence from pyroxenites. Geochimica et Cosmochimica Acta. 2015, doi:10.1016/j.gca.2015.11.001
  23. Huang J-, Huang F, Evans L, Glasauer S. Vanadium: Global (bio)geochemistry. Chemical Geology. 2015, doi:10.1016/j.chemgeo.2015.09.019
  24. Krigbaum J, Giovas CM, Kamenov GD. Strontium & lead isotope evidence for paleomobility of introduced fauna in the Caribbean. In: Society for American Archaeology 80th Annual Meeting, At San Francisco, USA.;  2015.
  25. Li C, Arndt NT, Tang Q, Ripley EM. Trace element indiscrimination diagrams. Lithos. 2015, doi:10.1016/j.lithos.2015.06.022.
  26. Li C, Zhang Z, Li W, Wang Y, Sun T, Ripley EM. Geochronology, petrology and Hf-S isotope geochemistry of the newly-discovered Xiarihamu magmatic Ni-Cu sulfide deposit in the Qinghai-Tibet plateau, western China. Lithos. 2015, doi:10.1016/j.lithos.2015.01.003
  27. Liu J-, Ren Z-, Nichols AR, Song M-, Qian S-, Zhang Y, et al. Petrogenesis of Late Cenozoic Basalts from North Hainan Island: Constraints from Melt Inclusions and Their Host Olivines. Geochimica et Cosmochimica Acta. 2015, doi:10.1016/j.gca.2014.12.023
  28. Ma Q, Zheng J-, Xu Y-, Griffin WL, Zhang R-. Are continental “adakites” derived from thickened or foundered lower crust? Earth and Planetary Science Letters. 2015; 419:125-33, doi:10.1016/j.epsl.2015.02.036
  29. Michael PJ, Graham DW. The Behavior and Concentration of CO2 in the Suboceanic Mantle: Inferences from Undegassed Ocean Ridge and Ocean Island Basalts. Lithos. 2015, doi:10.1016/j.lithos.2015.08.020
  30. Milidragovic D, Francis D. Ca. 2.7 Ga ferropicritic magmatism: a record of Fe-rich heterogeneities during Neoarchean global mantle melting.;  2015, doi:10.1016/j.gca.2015.09.023
  31. Paterson SR, Ducea MN. Arc Magmatic Tempos: Gathering the Evidence. Elements. 2015; 11(2):91-8, doi:10.2113/gselements.11.2.91
  32. Portnyagin M, Duggen S, Hauff F, Mironov N, Bindeman I, Thirlwall M, et al. Geochemistry of the Late Holocene rocks from the Tolbachik volcanic field, Kamchatka: Quantitative modelling of subduction-related open magmatic systems. Journal of Volcanology and Geothermal Research. 2015, doi:10.1016/j.rgg.2018.08.003
  33. Rasoazanamparany C, Widom E, Valentine GA, Smith EI, Cortés JA, Kuentz D, et al. Origin of Chemical and Isotopic Heterogeneity in a Mafic, Monogenetic Volcanic Field: A Case Study of the Lunar Crater Volcanic Field, Nevada. Chemical Geology. 2015, doi:10.1016/j.chemgeo.2015.01.004
  34. Savage PS, Moynier F, Chen H, Shofner G, Siebert J, Badro J, et al. Copper isotope evidence for large-scale sulphide fractionation during Earth’s differentiation. Geochemical Perspectives Letters. 2015:53-64, doi:10.7185/geochemlet.1506
  35. Straub SM, Gómez-Tuena A, Bindeman IN, Bolge LL, Brandl PA, Espinasa-Perena R, et al. Crustal Recycling by Subduction Erosion in the central Mexican Volcanic Belt. Geochimica et Cosmochimica Acta. 2015, doi:10.1016/j.gca.2015.06.001
  36. Stroncik NA, Niedermann S. Atmospheric Contamination of the Primary Ne and Ar Signal in Mid-Ocean Ridge Basalts and its Implications for Ocean Crust Formation. Geochimica et Cosmochimica Acta. 2015, doi:10.1016/j.gca.2015.09.016
  37. Tejada ML, Shimizu K, Suzuki K, Hanyu T, Sano T, Nakanishi M, et al. Geological Society of America Special Papers Isotopic evidence for a link between the Lyra Basin and Ontong Java Plateau. Geological Society of America Special Papers;  2015, doi:10.1130/2015.2511(14)
  38. Ukar E, Cloos M. Magmatic origin of low-T mafic blueschist and greenstone blocks from the Franciscan mélange, San Simeon, California. Lithos. 2015, doi:10.1016/j.lithos.2015.05.002
  39. Wei SS, Wiens DA, Zha Y, Plank T, Webb SC, Blackman DK, et al. Seismic evidence of effects of water on melt transport in the Lau back-arc mantle. Nature. 2015, doi:10.1038/nature14113
  40. White W. Probing the Earth’s Deep Interior Through Geochemistry. Geochemical Perspectives. 2015:95-251, doi:10.7185/geochempersp.4.2
  41. White WM. Isotopes, DUPAL, LLSVPs, and Anekantavada. Chemical Geology. 2015; 419:10-28, doi:10.1016/j.chemgeo.2015.09.026
  42. Yang W-, Niu H-, Cheng L-, Shan Q, Li N-. Geochronology, geochemistry and geodynamic implications of the Late Mesozoic volcanic rocks in the southern Great Xing’an Mountains, NE China. Journal of Asian Earth Sciences. 2015, doi:10.1016/j.jseaes.2014.12.00
  43. Zhang L, Chen R-, Zheng Y-, Hu Z, Yang Y, Xu L. Geochemical constraints on the protoliths of eclogites and blueschists from North Qilian, northern Tibet. Chemical Geology. 2015; 421, doi:10.1016/j.chemgeo.2015.11.026
  44. Zhao Y, Xue C, Zhao X, Yang YQ, Ke J. Magmatic Cu-Ni sulfide mineralization of the Huangshannan mafic-untramafic intrusion, Eastern Tianshan, China. Journal of Asian Earth Sciences. 2015; 105(1), doi:10.1016/j.jseaes.2015.03.031
  45. van der Zwan FM, Devey CW, Augustin N, Almeev RR, Bantan R, Basaham A. Hydrothermal activity at the ultraslow- to slow-spreading Red Sea Rift traced by chlorine in basalt. Chemical Geology. 2015, doi:10.1016/j.chemgeo.2015.04.001


  1. Acosta-Gongora P, Gleeson SA, Samson IM, Ootes L, Corriveau L. Trace Element Geochemistry of Magnetite and Its Relationship to Cu-Bi-Co-Au-Ag-U-W Mineralization in the Great Bear Magmatic Zone, NWT, Canada. Economic Geology. 2014; 109(7):1901-28, doi: 10.2113/econgeo.109.7.1901
  2. Albarède F, Albalat E, LEE C-. An intrinsic volatility scale relevant to the Earth and Moon and the status of water in the Moon. Meteoritics & Planetary Science. 2014; 50(4):568-77, doi:10.1111/maps.12331
  3. Augustin N, Devey CW, van der Zwan FM, Feldens P, Tominaga M, Bantan RA, et al. The rifting to spreading transition in the Red Sea. Earth and Planetary Science Letters. 2014; 395:217-30, doi:10.1016/j.epsl.2014.03.047
  4. Baziotis I, Mposkos E, Asimow PD. Continental rift and oceanic protoliths of mafic–ultramafic rocks from the Kechros Complex, NE Rhodope (Greece): implications from petrography, major and trace-element systematics, and MELTS modeling. International Journal of Earth Sciences. 2014; 103(4):981-1003, doi:10.1007/s00531-014-1007-8
  5. Berger J, Ennih N, Liégeois J-. Extreme trace elements fractionation in Cenozoic nephelinites and phonolites from the Moroccan Anti-Atlas (Eastern Saghro). Lithos. 2014, doi:10.1016/j.lithos.2014.09.018
  6. Bodinier J-, Godard M. Treatise on GeochemistryOrogenic, Ophiolitic, and Abyssal Peridotites. Elsevier;  2014. p. 103-67, doi:10.1016/B0-08-043751-6/02004-1
  7. Byerly BL. Constraints from mantle xenoliths on the geodynamic evolution of Earth’s upper mantle. Vol PhD. Austin: The University of Texas;  2014,
  8. Cabral RA, Jackson MG, Koga KT, Rose-Koga EF, Hauri EH, Whitehouse MJ, et al. Volatile cycling of H 2 O, CO 2 , F, and Cl in the HIMU mantle: A new window provided by melt inclusions from oceanic hot spot lavas at Mangaia, Cook Islands. Geochemistry, Geophysics, Geosystems. 2014, doi:10.1002/2014GC005473
  9. Cai Y, LaGatta A, Goldstein SL, Langmuir CH, Gómez-Tuena A, Pozzo AL, et al. Hafnium isotope evidence for slab melt contributions in the Central Mexican Volcanic Belt and implications for slab melting in hot and cold slab arcs. Chemical Geology. 2014, doi:10.1016/j.chemgeo.2014.04.002
  10. Chauvel C, Garçon M, Bureau S, Besnault A, Jahn B-, Ding Z. Constraints from loess on the Hf–Nd isotopic composition of the upper continental crust. Earth and Planetary Science Letters. 2014; 388:48-58, doi:10.1016/j.epsl.2013.11.045
  11. Chavrit D, Humler E, Grasset O. Mapping modern CO2 fluxes and mantle carbon content all along the mid-ocean ridge system. Earth and Planetary Science Letters. 2014; 387:229-39, doi:10.1016/j.epsl.2013.11.036
  12. Coogan LA. Treatise on Geochemistry The Lower Oceanic Crust. Elsevier;  2014. p. 497-541.
  13. Diaz-Bravo BA, Gomez-Tuena A, Ortega-Obregon C, Perez-Arvizu O. The origin of intraplate magmatism in the western Trans-Mexican Volcanic Belt. Geosphere. 2014; 10(2):340-73, doi:10.1130/GES00976.1
  14. Dick HJ, Zhou H. Ocean rises are products of variable mantle composition, temperature and focused melting. Nature Geoscience. 2014; 8(1):68-74, doi:10.1038/ngeo2318
  15. Diekema AR, Wesolek A, Walters CD. The NSF/NIH Effect: Surveying the Effect of Data Management Requirements on Faculty, Sponsored Programs, and Institutional Repositories. The Journal of Academic Librarianship. 2014. doi:10.1016/j.acalib.2014.04.010
  16. Escuder-Viruete J, Castillo-Carrión M, Pérez-Estaún A. Magmatic relationships between depleted mantle harzburgites, boninitic cumulate gabbros and subduction-related tholeiitic basalts in the Puerto Plata ophiolitic complex, Dominican Republic: Implications for the birth of the Caribbean island-arc. Lithos. 2014, doi:10.1016/j.lithos.2014.03.013
  17. Falloon TJ, Meffre S, Crawford AJ, Hoernle K, Hauff F, Bloomer SH, et al. Cretaceous fore-arc basalts from the Tonga arc: Geochemistry and implications for the tectonic history of the SW Pacific. Tectonophysics. 2014, doi:10.1016/j.tecto.2014.05.007
  18. Gale A, Langmuir CH, Dalton CA. The Global Systematics of Ocean Ridge Basalts and their Origin. Journal of Petrology. 2014; 55(6):1051-82, doi:/10.1093/petrology/egu017
  19. Gomez-Tuena A, Diaz-Bravo B, Vazquez-Duarte A, Perez-Arvizu O, Mori L. Andesite petrogenesis by slab-derived plume pollution of a continental rift. Geological Society, London, Special Publications. 2014; 385(1):65-101, doi:10.1144/SP385.4
  20. Harvey J, Garrido C, Savov I, Agostini S, Padrón-Navarta JA, Marchesi C, et al. 11B-rich fluids in subduction zones: the role of antigorite dehydration in subducting slabs and boron isotope heterogeneity in the mantle. Chemical Geology. 2014; 376, doi:10.1016/j.chemgeo.2014.03.015
  21. Hazen RM. Data-driven abductive discovery in mineralogy. American Mineralogist. 2014; 99(11-12):2165-70, doi:10.2138/am-2014-4895
  22. Herbrich A, Hoernle K, Werner R, Hauff F, v.d. Boogard P, Garbe-Schönberg D. Cocos Plate Seamounts offshore NW Costa Rica and SW Nicaragua: Implications for large-scale distribution of Galápagos plume material in the upper mantle. Lithos. 2014, doi:10.1016/j.lithos.2014.10.014
  23. Hofmann AW. 3.3 - Sampling Mantle Heterogeneity through Oceanic Basalts: Isotopes and Trace Elements. In: Treatise on Geochemistry (Second Edition). Oxford: Elsevier;  2014. p. 67-101, doi:10.1016/B0-08-043751-6/02123-X
  24. Iwamori H, Nakamura H. Isotopic heterogeneity of oceanic, arc and continental basalts and its implications for mantle dynamics. Gondwana Research. 2014, doi:10.1016/
  25. Jochum KP, Enzweiler J. 15.3 - Reference Materials in Geochemical and Environmental Research. In: Treatise on Geochemistry (Second Edition). Oxford: Elsevier;  2014. p. 43-70, doi:10.1016/B978-0-08-095975-7.01403-0
  26. Kakar MI, Kerr AC, Mahmood K, Collins AS, Khan M, McDonald I. Supra-subduction zone tectonic setting of the Muslim Bagh Ophiolite, northwestern Pakistan: Insights from geochemistry and petrology. Lithos. 2014, doi:10.1016/j.lithos.2014.05.029
  27. van Keken PE, Ballentine CJ, Hauri EH. Treatise on Geochemistry Convective Mixing in the Earth's Mantle. Elsevier;  2014. p. 509-25.
  28. Kelemen PB, Hanghøj K, Greene AR. 4.21 - One View of the Geochemistry of Subduction-Related Magmatic Arcs, with an Emphasis on Primitive Andesite and Lower Crust. In: Treatise on Geochemistry (Second Edition). Oxford: Elsevier;  2014. p. 749-806, doi:10.1016/B0-08-043751-6/03035-8
  29. Kelley KA. Inside Earth Runs Hot and Cold. Science. 2014; 344(6179):51-2, doi:10.1126/science.1252089.
  30. Kerr AC. Treatise on Geochemistry Oceanic Plateaus. Elsevier;  2014. p. 631-67, doi:10.1016/B0-08-043751-6/03033-4
  31. Koepke J. Encyclopedia of Marine Geosciences Gabbro. Harff J, Meschede M, Petersen S, Thiede J, editors. Dordrecht: Springer Netherlands;  2014.
  32. Larrea P, Gale C, Ubide T, Widom E, Lago M, Franca Z. Magmatic Evolution of Graciosa (Azores, Portugal). Journal of Petrology. 2014; 55(11):2125-54, doi:10.1093/petrology/egu052
  33. Lee C-. Treatise on Geochemistry Physics and Chemistry of Deep Continental Crust Recycling. Elsevier;  2014. p. 423-56.
  34. Li X, Mo X, Bader T, Scheltens M, Yu X, Dong G, et al. Petrology, geochemistry and geochronology of the magmatic suite from the Jianzha Complex, central China: petrogenesis and geodynamic implications. Journal of Asian Earth Sciences. 2014, doi:10.1016/j.jseaes.2014.07.017
  35. Machida S, Orihashi Y, Magnani M, Neo N, Wilson S, Tanimizu M, et al. Regional mantle heterogeneity regulates melt production along the Réunion hotspot-influenced Central Indian Ridge, 2014, doi:10.2343/geochemj.2.0320
  36. Martin H, Moyen J-, Guitreau M, Blichert-Toft J, Le Pennec J-. Why Archaean TTG cannot be generated by MORB melting in subduction zones. Lithos. 2014; 198-199, doi:10.1016/j.lithos.2014.02.017
  37. McDonough WF. Treatise on Geochemistry Compositional Model for the Earth's Core. Elsevier;  2014. p. 559-77, doi:10.1016/B978-0-08-095975-7.00215-1
  38. Melekestseva IY, Tret’yakov GA, Nimis P, Yuminov AM, Maslennikov VV, Maslennikova SP, et al. Barite-rich massive sulfides from the Semenov-1 hydrothermal field (Mid-Atlantic Ridge, 13°30.87´ N): Evidence for phase separation and magmatic input. Marine Geology. 2014, doi:10.1016/j.margeo.2013.12.013
  39. Pernet-Fisher JF, Howarth GH, Liu Y, Barry PH, Carmody L, Valley JW, et al. Komsomolskaya diamondiferous eclogites: evidence for oceanic crustal protoliths. Contributions to Mineralogy and Petrology. 2014; 167:1-17, doi: 10.1016/j.margeo.2013.12.013
  40. Rubin K. Encyclopedia of Marine Geosciences Mid-Ocean Ridge Magmatism and Volcanism. Harff J, Meschede M, Petersen S, Thiede J, editors. Dordrecht: Springer Netherlands;  2014, doi:10.1007/978-94-007-6644-0_28-3
  41. Ryan JG, Chauvel C. Treatise on Geochemistry The Subduction-Zone Filter and the Impact of Recycled Materials on the Evolution of the Mantle. Elsevier;  2014. p. 479-508, doi:10.1016/B978-0-08-095975-7.00211-4
  42. Samuel H, King SD. Mixing at mid-ocean ridges controlled by small-scale convection and plate motion. Nature Geoscience. 2014; 7(8):602-5, doi:10.1038/ngeo2208
  43. Sandeman HA, Ootes L, Cousens B, Kilian T. Petrogenesis of Gunbarrel magmatic rocks: Homogeneous continental tholeiites associated with extension and rifting of Neoproterozoic Laurentia. Precambrian Research. 2014; 252:166-79, doi:10.1016/j.precamres.2014.07.007
  44. Schenker FL, Burg J-, Kostopoulos D, Moulas E, Larionov A, von Quadt A. From Mesoproterozoic magmatism to collisional Cretaceous anatexis: Tectono-magmatic history of the Pelagonian Zone, Greece. Tectonics. 2014, doi:10.1002/2014TC003563
  45. Simon A, Yogodzinski GM, Robertson K, Smith E, Selyangin O, Kiryukhin A, et al. Evolution and Genesis of Volcanic Rocks from Mutnovsky Volcano, Kamchatka. Journal of Volcanology and Geothermal Research. 2014, doi:10.1016/j.jvolgeores.2014.09.003
  46. Søager N, Holm PM, Thirlwall MF. Sr, Nd, Pb and Hf isotopic constraints on mantle sources and crustal contaminants in the Payenia volcanic province, Argentina. Lithos. 2014;doi:10.1016/j.lithos.2014.11.026
  47. Staudigel H. Treatise on Geochemistry Chemical Fluxes from Hydrothermal Alteration of the Oceanic Crust. Elsevier;  2014. p. 583-606.
  48. Uno MA, Iwamori H, Nakamura H, Yokoyama TE, Ishikawa TS, Tanimizu MA. Elemental transport upon hydration of basic schists during regional metamorphism: Geochemical evidence from the Sanbagawa metamorphic belt, Japan. Geochemical Journal. 2014; 48(1):29-49, doi:10.2343/geochemj.2.0283
  49. White WM, Klein EM. Treatise on Geochemistry Composition of the Oceanic Crust. Elsevier;  2014. p. 457-96.
  50. Yang X-, Chen Y-, Hou K-, Liu S-, Liu J-. U–Pb zircon geochronology and geochemistry of Late Jurassic basalts in Maevatanana, Madagascar: Implications for the timing of separation of Madagascar from Africa. Journal of African Earth Sciences. 2014; 100:569-78, doi:10.1080/00206814.2014.977969
  51. Yu X. The Big data tool for seabed Petrogeochemistry research-PetDB and its Application in Geoscience. Advances in Earth Science. 2014; 29(2).
  52. Zou D, Liu Y, Hu Z, Gao S, Zong K, Xu R, et al. Pyroxenite and peridotite xenoliths from Hexigten, Inner Mongolia: Insights into the Paleo-Asian Ocean subduction-related melt/fluid–peridotite interaction. Geochimica et Cosmochimica Acta. 2014; 140:435-54, doi:10.1016/j.gca.2014.05.046


  1. Borghini G, Rampone E, Zanetti A, Class C, Cipriani A, Hofmann AW, et al. Meter-scale Nd isotopic heterogeneity in pyroxenite-bearing Ligurian peridotites encompasses global-scale upper mantle variability. Geology. 2013, doi:10.1130/G34438.1
  2. Brandl PA, Regelous M, Beier C, Haase KM. High mantle temperatures following rifting caused by continental insulation. Nature Geoscience. 2013, doi:10.1038/ngeo1758
  3. Breton T, Nauret F, Pichat S, Moine B, Moreira M, Rose-Koga EF, et al. Geochemical heterogeneities within the Crozet hotspot. Earth and Planetary Science Letters. 2013, doi:10.1016/j.epsl.2013.06.020
  4. Cannat M, Cann J, Maclennan J. Geophysical Monograph Series Mid-Ocean RidgesSome Hard Rock Constraints on the Supply of Heat to Mid-Ocean Ridges. German CR, Lin J, Parson LM, editors. Washington, D. C.: American Geophysical Union;  2013, doi:10.1029/148GM05
  5. Carbotte SM, Marjanović M, Carton H, Mutter JC, Canales JP, Nedimović MR, et al. Fine-scale segmentation of the crustal magma reservoir beneath the East Pacific Rise. Nature Geoscience. 2013, doi:10.1038/ngeo1933
  6. Chalot-Prat F, Falloon TJ, Green DH, Hibberson WO. Melting of plagioclase + spinel lherzolite at low pressures (0.5 GPa): An experimental approach to the evolution of basaltic melt during mantle refertilisation at shallow depths. Lithos. 2013, doi:10.1016/j.lithos.2013.03.012
  7. Clague DA, Dreyer BM, Paduan JB, Martin JF, Chadwick WW, Caress DW, et al. Geologic history of the summit of Axial Seamount, Juan de Fuca Ridge. Geochemistry, Geophysics, Geosystems. 2013, doi:10.1002/ggge.20240
  8. Clog M, Aubaud C, Cartigny P, Dosso L. The hydrogen isotopic composition and water content of southern Pacific MORB: A reassessment of the D/H ratio of the depleted mantle reservoir. Earth and Planetary Science Letters. 2013; 381:156-65, doi:10.1016/j.epsl.2013.08.043
  9. Cottrell E, Kelley KA. Redox Heterogeneity in Mid-Ocean Ridge Basalts as a Function of Mantle Source. Science. 2013; 340(6138):1314-7, doi:10.1126/science.1233299
  10. Dreyer BM, Clague DA, Gill JB. Petrological variability of recent magmatism at axial seamount summit, juan de fuca ridge. Geochemistry, Geophysics, Geosystems. 2013, doi:10.1002/ggge.20239
  11. Gale A, Dalton CA, LANGMUIR CH, Su Y, Schilling J-. The mean composition of ocean ridge basalts. Geochemistry, Geophysics, Geosystems. 2013, doi:10.1029/2012GC004334
  12. Garçon M, Chauvel C, France-Lanord C, Limonta M, Garzanti E. Removing the “heavy mineral effect” to obtain a new Pb isotopic value for the upper crust. Geochemistry, Geophysics, Geosystems. 2013, doi:10.1002/ggge.20219
  13. Garçon M, Chauvel C, France-Lanord C, Huyghe P, Lavé J. Continental sedimentary processes decouple Nd and Hf isotopes. Geochimica et Cosmochimica Acta. 2013, doi:10.1016/j.gca.2013.07.027
  14. Govindaraju V, Zhang C, Re C. Understanding tables in context using standard NLP toolkits. Proceedings of the 51st Annual Meeting of the Association for Computational Linguistics. 2013,
  15. Heinonen JS, Luttinen AV, Riley TR, Michallik RM. Mixed pyroxenite-peridotite sources for mafic and ultramafic dikes from the Antarctic segment of the Karoo continental flood basalt province. Lithos. 2013, doi:10.1016/j.lithos.2013.05.015
  16. Husen A, Almeev RR, Holtz F, Koepke J, Sano T, Mengel K. Geothermobarometry of Basaltic Glasses from the Tamu Massif, Shatsky Rise Oceanic Plateau. Geochemistry, Geophysics, Geosystems. 2013, doi:10.1002/ggge.20231
  17. Jagoutz O, Schmidt MW. The composition of the foundered complement to the continental crust and a re-evaluation of fluxes in arcs. Earth and Planetary Science Letters. 2013, doi:10.1016/j.epsl.2013.03.051
  18. Kelley KA, Kingsley R, Schilling J-. Composition of plume-influenced mid-ocean ridge lavas and glasses from the Mid-Atlantic Ridge, East Pacific Rise, Galápagos Spreading Center, and Gulf of Aden. Geochemistry, Geophysics, Geosystems. 2013, doi:10.1002/ggge.20049
  19. Kipf A, Hauff F, Werner R, Gohl K, van den Bogaard P, Hoernle K, et al. Seamounts off the West Antarctic margin: A case for non-hotspot driven intraplate volcanism. Gondwana Research. 2013, doi:10.1016/
  20. Lange AE, Nielsen RL, Tepley FJ, Kent AJ. Diverse Sr isotope signatures preserved in mid-oceanic-ridge basalt plagioclase. Geology. 2013; 41(2):279-82, doi:10.1130/G33739.1
  21. Lange AE, Nielsen RL, Tepley FJ, Kent AJ. The petrogenesis of plagioclase-phyric basalts at mid-ocean ridges. Geochemistry, Geophysics, Geosystems. 2013, doi:10.1002/ggge.20207
  22. Liu B, Ma C-, Zhang J-, Xiong F-, Huang J, Jiang H-. 40Ar–39Ar age and geochemistry of subduction-related mafic dikes in northern Tibet, China: petrogenesis and tectonic implications. International Geology Review. 2013:1-17, doi:10.1080/00206814.2013.818804
  23. Liu X, Xu J, Castillo PR, Xiao W, Shi Y, Feng Z, et al. The Dupal isotopic anomaly in the southern Paleo-Asian Ocean: Nd-Pb isotope evidence from ophiolites in Northwest China. Lithos. 2013, doi:10.1016/j.lithos.2013.08.020
  24. MacLeod CJ, Johan Lissenberg C, Bibby LE. "Moist MORB" axial magmatism in the Oman ophiolite: The evidence against a mid-ocean ridge origin. Geology. 2013; 41(4):459-62, doi:10.1130/G33904.1
  25. Manuella FC, Brancato A, Carbone S, Gresta S. A crustal-upper mantle model for southeastern Sicily (Italy) from the integration of petrologic and geophysical data. Journal of Geodynamics. 2013, doi:10.1016/j.jog.2013.02.006
  26. Manuella FC, Brancato A, Carbone S, Gresta S. Reply to “Comments on the paper “A crustal-upper mantle model for southeastern Sicily (Italy) from the integration of petrologic and geophysical data” by ”. Journal of Geodynamics. 2013, doi:10.1016/j.jog.2013.09.005
  27. Mullen EK, Weis D. Sr-Nd-Hf-Pb isotope and trace element evidence for the origin of alkalic basalts in the Garibaldi Belt, northern Cascade arc. Geochemistry, Geophysics, Geosystems. 2013, doi:10.1002/ggge.20191
  28. Peng R, Zhai Y, Li C, Ripley EM. The Erbutu Ni-Cu Deposit in the Central Asian Orogenic Belt: A Permian Magmatic Sulfide Deposit Related to Boninitic Magmatism in An Arc Setting. Economic Geology. 2013; 108(8):1879-88, doi:10.2113/econgeo.108.8.1879
  29. Pisias NG, Murray RW, Scudder RP. Multivariate statistical analysis and partitioning of sedimentary geochemical data sets: General principles and specific MATLAB scripts. Geochemistry, Geophysics, Geosystems. 2013; 14(10), doi:10.1002/ggge.20247
  30. Prelević D, Jacob DE, Foley SF. Recycling plus: A new recipe for the formation of Alpine–Himalayan orogenic mantle lithosphere. Earth and Planetary Science Letters. 2013; 362:187-97, doi:10.1016/j.epsl.2012.11.035
  31. Ray JS, Pande K, Bhutani R, Shukla AD, Rai VK, Kumar A, et al. Age and geochemistry of the Newania dolomite carbonatites, India: implications for the source of primary carbonatite magma. Contributions to Mineralogy and Petrology. 2013, doi:10.1007/s00410-013-0945-7
  32. Ray D, Misra S, Banerjee R. Geochemical variability of MORBs along slow to intermediate spreading Carlsberg-Central Indian Ridge, Indian Ocean. Journal of Asian Earth Sciences. 2013, doi:10.1016/j.jseaes.2013.03.008
  33. Ray D, Misra S, Widdowson M, Langmuir CH. A common parentage for Deccan Continental Flood Basalt and Central Indian Ocean Ridge Basalt? A Geochemical and isotopic approach. Journal of Asian Earth Sciences. 2013, doi:10.1016/j.jseaes.2013.12.015
  34. Risse A, Trumbull RB, Kay SM, Coira B, Romer RL. Multi-stage Evolution of Late Neogene Mantle-derived Magmas from the Central Andes Back-arc in the Southern Puna Plateau of Argentina. Journal of Petrology. 2013, doi:10.1093/petrology/egt038
  35. Rocha-Júnior ER, Marques LS, Babinski M, Nardy AJ, Figueiredo AM, Machado FB. Sr-Nd-Pb isotopic constraints on the nature of the mantle sources involved in the genesis of the high-Ti tholeiites from Northern Paraná Continental Flood Basalts (Brazil). Journal of South American Earth Sciences. 2013, doi:10.1016/j.jsames.2013.04.004
  36. Rohde J, Hoernle K, Hauff F, Werner R, O'Connor J, Class C, et al. 70 Ma chemical zonation of the Tristan-Gough hotspot track. Geology. 2013; 41(3):335-8, doi:10.1130/G33790.1
  37. Sakuyama T, Tian W, Kimura J-, Fukao Y, Hirahara Y, Takahashi T, et al. Recycling and melting of dehydrated oceanic crust from the stagnant slab and contribution from the hydrated mantle transition zone in off-arc mantle: Constraints from Cenozoic alkaline basalts in eastern China. Chemical Geology. 2013, doi:10.1016/j.chemgeo.2013.09.012
  38. Sakuyama T, Tian W, Kimura J-, Fukao Y, Hirahara Y, Takahashi T, et al. Melting of dehydrated oceanic crust from the stagnant slab and of the hydrated mantle transition zone: Constraints from Cenozoic alkaline basalts in eastern China. Chemical Geology. 2013; 359:32-48, doi:10.1016/j.chemgeo.2013.09.012
  39. Sandeman HA, Heaman LM, LeCheminant AN. The Paleoproterozoic Kaminak dykes, Hearne craton, western Churchill Province, Nunavut, Canada: Preliminary constraints on their age and petrogenesis. Precambrian Research. 2013; 232:119-39, doi:10.1016/j.precamres.2012.06.002
  40. Silva IG, Weis D, Scoates JS. Isotopic Systematics of the Early Mauna Kea Shield Phase and Insight Into the Deep Mantle Beneath the Pacific Ocean. Geochemistry, Geophysics, Geosystems. 2013, doi:10.1002/ggge.20047
  41. Smith D. Olivine thermometry and source constraints for mantle fragments in the Navajo Volcanic Field, Colorado Plateau, southwest United States: Implications for the mantle wedge. Global Biogeochemical Cycles. 2013, doi:10.1002/ggge.20065
  42. Søager N, Holm PM. Melt-peridotite reactions in upwelling eclogite bodies: Constraints from EM1-type alkaline basalts in Payenia, Argentina. Chemical Geology. 2013, doi:10.1016/j.chemgeo.2013.10.024
  43. Straub SM, Gomez-Tuena A, Zellmer GF, Espinasa-Perena R, Stuart FM, Cai Y, et al. The Processes of Melt Differentiation in Arc Volcanic Rocks: Insights from OIB-type Arc Magmas in the Central Mexican Volcanic Belt. Journal of Petrology. 2013; 54(4):665-701, doi:10.1093/petrology/egs081
  44. Sun T, Qian Z-, Li C, Xia M-, Yang S-. Petrogenesis and economic potential of the Erhongwa mafic–ultramafic intrusion in the Central Asian Orogenic Belt, NW China: Constraints from olivine chemistry, U-Pb age and Hf isotopes of zircons, and whole–rock Sr–Nd–Pb isotopes. Lithos. 2013, doi:10.1016/j.lithos.2013.10.004
  45. Sun T, Qian Z-, Deng Y-, Li C, Song X-, Tang Q. PGE and Isotope (Hf-Sr-Nd-Pb) Constraints on the Origin of the Huangshandong Magmatic Ni-Cu Sulfide Deposit in the Central Asian Orogenic Belt, Northwestern China. Economic Geology. 2013; 108(8):1849-64, doi:10.2113/econgeo.108.8.1849
  46. Tang G-, Wang Q, Wyman DA, Sun M, Zhao Z-, Jiang Z-. Petrogenesis of gold-mineralized magmatic rocks of the Taerbieke area, northwestern Tianshan (western China): Constraints from geochronology, geochemistry and Sr-Nd-Pb-Hf isotopic compositions. Journal of Asian Earth Sciences. 2013, doi:10.1016/j.jseaes.2013.03.022
  47. Tejada ML, Suzuki K, Hanyu T, Mahoney JJ, Ishikawa A, Tatsumi Y, et al. Cryptic lower crustal signature in the source of the Ontong Java Plateau revealed by Os and Hf isotopes. Earth and Planetary Science Letters. 2013; 377-378:84-96, doi:10.1016/j.epsl.2013.07.022
  48. Teng F-, Dauphas N, Huang S, Marty B. Iron isotopic systematics of oceanic basalts. Geochimica et Cosmochimica Acta. 2013; 107:12-26, doi:10.1016/j.gca.2012.12.027
  49. Ukar E, Cloos M. Actinolitic rinds on low-T mafic blueschist blocks in the Franciscan shale-matrix mélange near San Simeon: Implications for metasomatism and tectonic history. Earth and Planetary Science Letters. 2013, doi:10.1016/j.epsl.2013.06.038
  50. Valencia VA, Righter K, Rosas-Elguera J, López-Martínez M, Grove M. The age and composition of the pre-Cenozoic basement of the Jalisco Block: implications for and relation to the Guerrero composite terrane. Contributions to Mineralogy and Petrology. 2013; 166(3):801-24, doi:10.1007/s00410-013-0908-z
  51. Van Kranendonk MJ, Kirkland CL. Orogenic climax of Earth: The 1.2-1.1 Ga Grenvillian superevent. Geology. 2013, doi:10.1130/G34243.1
  52. Velikoslavinskii SD, Glebovitskii VA, Krylov DP. Separation between sedimentary and magmatic silicate rocks by discriminant analysis of major element contents. Doklady Earth Sciences. 2013; 453(1):1150-3, doi:10.1134/S1028334X13110238
  53. Wilson SC, Murton BJ, Taylor RN. Mantle composition controls the development of an Oceanic Core Complex. Geochemistry, Geophysics, Geosystems. 2013, doi:10.1002/ggge.20046
  54. Xia M-, Jiang C-, Li C, Xia Z-. Characteristics of a Newly Discovered Ni-Cu Sulfide Deposit Hosted in the Poyi Ultramafic Intrusion, Tarim Craton, NW China. Economic Geology. 2013; 108(8):1865-78, doi:10.2113/econgeo.108.8.1865
  55. Yachi Y, Kitagawa H, Kunihiro T, Nakamura E. Software Dedicated for the Curation of Geochemical Data Sets in Analytical Laboratories. Geostandards and Geoanalytical Research. 2013, doi:10.1111/j.1751-908X.2013.00205.x
  56. Zhang G-, Chen L-, Li S-. Mantle dynamics and generation of a geochemical mantle boundary along the East Pacific Rise – Pacific/Antarctic ridge. Earth and Planetary Science Letters. 2013; 383:153-63, doi:10.1016/j.epsl.2013.09.045
  57. Zhang Z-, Li W-, Gao Y-, Li C, Ripley EM, Kamo S. Sulfide mineralization associated with arc magmatism in the Qilian Block, western China: zircon U-Pb age and Sr-Nd-Os-S isotope constraints from the Yulonggou and Yaqu gabbroic intrusions. Mineralium Deposita. 2013, doi:10.1007/s00126-013-0488-x


  1. Borisova AY, Ceuleneer G, Kamenetsky VS, Arai S, Bejina F, Abily B, et al. A New View on the Petrogenesis of the Oman Ophiolite Chromitites from Microanalyses of Chromite-hosted Inclusions. Journal of Petrology. 2012, doi:/10.1093/petrology/egs054
  2. Brant C, Coogan LA, Gillis KM, Seyfried WE, Pester NJ, Spence J. Lithium and Li-isotopes in young altered upper oceanic crust from the East Pacific Rise. Geochimica et Cosmochimica Acta. 2012, doi:10.1016/j.gca.2012.08.025
  3. Brophy JG, Pu X. Rare earth element–SiO2 systematics of mid-ocean ridge plagiogranites and host gabbros from the Fournier oceanic fragment, New Brunswick, Canada: a field evaluation of some model predictions. Contributions to Mineralogy and Petrology. 2012; 164(2):191-204, doi:10.1007/s00410-012-0732-x
  4. Byerly BL, Lassiter JC. Evidence from mantle xenoliths for lithosphere removal beneath the central Rio Grande Rift. Earth and Planetary Science Letters. 2012; 355-356:82-93, doi:10.1016/j.epsl.2012.08.034
  5. Chauvel C, Maury RC, Blais S, Lewin E, Guillou H, Guille G, et al. The size of plume heterogeneities constrained by Marquesas isotopic stripes. Geochemistry Geophysics Geosystems. 2012; 13, doi:10.1029/2012GC004123
  6. Chavrit D, Humler E, Morizet Y, Laporte D. Influence of magma ascent rate on carbon dioxide degassing at oceanic ridges: Message in a bubble. Earth and Planetary Science Letters. 2012; 357-358:376-85, doi:10.1016/j.epsl.2012.09.042
  7. Chen Z-, Zhou H-, Liu Y, Yang Q-, Li J-, Dick HJ. Influence of igneous processes and serpentinization on geochemistry of the Logatchev Massif harzburgites (14°45N, Mid-Atlantic Ridge), and comparison with global abyssal peridotites. International Geology Review. 2012:1-16, doi:10.1080/00206814.2012.704674
  8. Choi H-, Choi SH, Lee D-, Kang HC. Geochemical Evolution of Basaltic Volcanism within the Tertiary Basins of Southeastern Korea and the Opening of the East Sea (Sea of Japan). Journal of Volcanology and Geothermal Research. 2012, doi:/10.1016/j.jvolgeores.2012.09.007
  9. Cluzel D, Jourdan F, Meffre S, Maurizot P, Lesimple S. The metamorphic sole of New Caledonia ophiolite: 40 Ar/ 39 Ar, U-Pb, and geochemical evidence for subduction inception at a spreading ridge. Tectonics. 2012; 31(3), doi:10.1029/2011TC003085
  10. Collier ML. Spatial-Statistical Properties of Geochemical Variability as Constraints on Magma Transport and Evolution Processes at Ocean Ridges. New York, NY: Columbia University;  2012, doi:10.7916/D82V2P43
  11. Coogan LA, Dosso S. An internally consistent, probabilistic, determination of ridge-axis hydrothermal fluxes from basalt-hosted systems. Earth and Planetary Science Letters. 2012; 323-324:92-101, doi:10.1016/j.epsl.2012.01.017
  12. Dale CW, Macpherson CG, Pearson GD, Hammond SJ, Arculus RJ. Inter-element fractionation of highly siderophile elements in the Tonga Arc due to flux melting of a depleted source. Geochimica et Cosmochimica Acta. 2012; 89:202-25, doi:10.1016/j.gca.2012.03.025
  13. Deschamps F, Godard M, Guillot S, Chauvel C, Andreani M, Hattori K, et al. Behavior of fluid-mobile elements in serpentines from abyssal to subduction environments: Examples from Cuba and Dominican Republic. Chemical Geology. 2012; 312-313:93-117, doi:10.1016/j.chemgeo.2012.04.009
  14. Gao Y, Vils F, Cooper KM, Banerjee N, Harris M, Hoefs J, et al. Downhole variation of lithium and oxygen isotopic compositions of oceanic crust at East Pacific Rise, ODP Site 1256. Geochemistry Geophysics Geosystems. 2012; 13, doi:10.1029/2012GC004207
  15. Guarnieri L, Nakamura E, Piccardo GB, Sakaguchi C, Shimizu N, Vannucci R, et al. Petrology, Trace Element and Sr, Nd, Hf Isotope Geochemistry of the North Lanzo Peridotite Massif (Western Alps, Italy). Journal of Petrology. 2012, doi:10.1093/petrology/egs049
  16. Haase KM, Beier C, Fretzdorff S, Smellie JL, Garbe-Schönberg D. Magmatic evolution of the South Shetland Islands, Antarctica, and implications for continental crust formation. Contributions to Mineralogy and Petrology. 2012, doi:10.1007/s00410-012-0719-7
  17. Hartmann J, Moosdorf N. The new global lithological map database GLiM: A representation of rock properties at the Earth surface. Geochemistry Geophysics Geosystems. 2012; 13, doi:10.1029/2012GC004370
  18. Hollocher K, Robinson P, Walsh E, Roberts D. Geochemistry of amphibolite-facies volcanics and gabbros of the Storen Nappe in extensions west and southwest of Trondheim, western gneiss region, Norway: A key to correlations and paleotectonic settings. American Journal of Science. 2012; 312(4):357-416, doi:10.2475/04.2012.01
  19. Huang J-, Gréau Y, Griffin WL, O'Reilly SY, Pearson NJ. Multi-stage origin of Roberts Victor eclogites: Progressive metasomatism and its isotopic effects. Lithos. 2012, doi:10.1016/j.lithos.2012.03.002
  20. Iwamori H, Nakamura H. East-west mantle geochemical hemispheres constrained from Independent Component Analysis of basalt isotopic compositions. Geochemical Journal. 2012; 46, doi:10.2343/geochemj.2.0224
  21. Joy KH, Zolensky ME, Nagashima K, Huss GR, Ross DK, McKay DS, et al. Direct Detection of Projectile Relics from the End of the Lunar Basin-Forming Epoch. Science. 2012; 336(6087):1426-9, doi:10.1126/science.1219633
  22. Kimura J-, Sano S. Reactive Melt Flow as the Origin of Residual Mantle Lithologies and Basalt Chemistries in Mid-Ocean Ridges: Implications from the Red Hills Peridotite, New Zealand. Journal of Petrology. 2012; 53(8):1637-71, doi:10.1093/petrology/egs028
  23. Kirchner TM, Gillis KM. Mineralogical and strontium isotopic record of hydrothermal processes in the lower ocean crust at and near the East Pacific Rise. Contributions to Mineralogy and Petrology. 2012; 164(1):123-41,doi:10.1007/s00410-012-0729-5
  24. Konter JG, Jackson MG. Large volumes of rejuvenated volcanism in Samoa: Evidence supporting a tectonic influence on late-stage volcanism. Geochemistry Geophysics Geosystems. 2012; 13, doi:10.1029/2011GC003974
  25. Kushendratno, Pallister JS, Kristianto, Bina FR, McCausland W, Carn S, et al. Recent explosive eruptions and volcano hazards at Soputan volcano—a basalt stratovolcano in north Sulawesi, Indonesia. Bulletin of Volcanology. 2012; 74(7):1581-609, doi:10.1007/s00445-012-0620-2
  26. Lange AE, Nielsen RL, Tepley FJ, Kent AJ. Diverse Sr isotope signatures preserved in mid-oceanic-ridge basalt plagioclase. Geology. 2012, doi:10.1130/G33739.1
  27. Laubier M, Gale A, Langmuir CH. Melting and Crustal Processes at the FAMOUS Segment (Mid-Atlantic Ridge): New Insights from Olivine-hosted Melt Inclusions from Multiple Samples. Journal of Petrology. 2012; 53(4):665-98, doi:10.1093/petrology/egr075
  28. Ledneva GV, Bazylev BA, Lebedev VV, Kononkova NN, Ishiwatari A. U-Pb zircon age of gabbroids of the Ust’-Belaya mafic-ultramafic massif (Chukotka) and its interpretation. Geochemistry International. 2012; 50(1):44-53, doi:10.1134/S0016702912010077
  29. Lissenberg JC, MacLeod CJ, Howard KA, Godard M. Pervasive reactive melt migration through fast-spreading lower oceanic crust (Hess Deep, equatorial Pacific Ocean). Earth and Planetary Science Letters. 2012, doi:10.1016/j.epsl.2012.11.012
  30. Lytle ML, Kelley KA, Hauri EH, Gill JB, Papia D, Arculus RJ. Tracing mantle sources and Samoan influence in the northwestern Lau back-arc basin. Geochemistry Geophysics Geosystems. 2012; 13, doi:10.1029/2012GC004233
  31. Manduca CA, Kastens KA. Geological Society of America Special PapersEarth and Mind II: A Synthesis of Research on Thinking and Learning in the GeosciencesGeoscience and geoscientists: Uniquely equipped to study Earth. Vol 486. Geological Society of America;  2012, doi:10.1144/0016-76492011-015
  32. Menke W. Geophysical Data Analysis: Discrete Inverse Theory Factor Analysis. Elsevier;  2012.
  33. Merle R, Kaczmarek M-, Tronche E, Girardeau J. Occurrence of inherited supra-subduction zone mantle in the oceanic lithosphere as inferred from mantle xenoliths from Dragon Seamount (southern Tore-Madeira Rise). Journal of the Geological Society. 2012; 169(3):251-67, doi:10.1144/0016-76492011-015
  34. Perfit M, Wanless DV, Ridley IW, Klein E, Smith M, Goss A, et al. Lava Geochemistry as a Probe into Crustal Formation at the East Pacific Rise. Oceanography. 2012; 25(1):89-93, doi: 10.5670/oceanog.2012.06
  35. Pesce KA. Petrology and geochemistry of pyroxenites in the Lanzo ultramafic massif, Northwestern Italy. Cambridge, MA: Massachusetts Institute of Technology;  2012,
  36. Picazo S, Cannat M, Delacour A, Escartín J, Rouméjon S, Silantyev S. Deformation associated with the denudation of mantle-derived rocks at the Mid-Atlantic Ridge 13°–15°N: The role of magmatic injections and hydrothermal alteration. Geochemistry Geophysics Geosystems. 2012; 13,doi:10.1029/2012GC004121
  37. Porder S, Ramachandran S. The phosphorus concentration of common rocks—a potential driver of ecosystem P status. Plant and Soil. 2012, doi:10.1007/s11104-012-1490-2
  38. Radhakrishna T, Joseph M. Geochemistry and paleomagnetism of Late Cretaceous mafic dikes in Kerala, southwest coast of India in relation to large igneous provinces and mantle plumes in the Indian Ocean region. Geological Society of America Bulletin. 2012; 124(1-2):240-55, doi:10.1130/B30288.1
  39. Ray JS, Mahoney JJ, Duncan RA, Ray J, Wessel P, Naar DF. Chronology and Geochemistry of Lavas from the Nazca Ridge and Easter Seamount Chain: an ~30 Myr Hotspot Record. Journal of Petrology. 2012; 53(7):1417-48, doi:10.1093/petrology/egs021
  40. Robles-Cruz SE, Escayola M, Jackson S, Galí S, Pervov V, Watangua M, et al. U–Pb SHRIMP geochronology of zircon from the Catoca kimberlite, Angola: Implications for diamond exploration. Chemical Geology. 2012; 310-311:137-47, doi:10.1016/j.chemgeo.2012.04.001
  41. Sakyi PA, Tanaka R, Kobayashi K, Nakamura E. Inherited Pb isotopic records in olivine antecryst-hosted melt inclusions from Hawaiian lavas. Geochimica et Cosmochimica Acta. 2012; 95:169-95, doi:10.1016/j.gca.2012.07.025
  42. Sandeman HA, Heaman LM, LeCheminant AN. The Paleoproterozoic Kaminak dykes, Hearne craton, western Churchill Province, Nunavut, Canada: Preliminary constraints on their age and petrogenesis. Precambrian Research. 2012, doi:10.1016/j.precamres.2012.06.002
  43. Sano T, Shimizu K, Ishikawa A, Senda R, Chang Q, Kimura J-, et al. Variety and origin of magmas on Shatsky Rise, northwest Pacific Ocean. Geochemistry Geophysics Geosystems. 2012; 13, doi:10.1029/2012GC004235
  44. Schorn A, Neubauer F, Genser J, Bernroider M. The Haselgebirge evaporitic mélange in central Northern Calcareous Alps (Austria): Part of the Permian to Lower Triassic rift of the Meliata ocean? Tectonophysics. 2012, doi:10.1016/j.tecto.2012.10.016
  45. Shaw AM, Hauri EH, Behn MD, Hilton DR, Macpherson CG, Sinton JM. Long-term preservation of slab signatures in the mantle inferred from hydrogen isotopes. Nature Geoscience. 2012; 5(3):224-8, doi:10.1038/ngeo1406
  46. Speckbacher R, Behrmann JH, Nagel TJ, Stipp M, Mahlke J. Fluid flow and metasomatic fault weakening in the Moresby Seamount detachment, Woodlark Basin, offshore Papua New Guinea. Geochemistry Geophysics Geosystems. 2012; 13, doi:10.1029/2012GC004407
  47. Starkey NA, Fitton GJ, Stuart FM, Larsen LM. Melt inclusions in olivines from early Iceland plume picrites support high 3He/4He in both enriched and depleted mantle. Chemical Geology. 2012; 306-307:54-62, doi:10.1016/j.chemgeo.2012.02.022
  48. Stracke A. Earth's heterogeneous mantle: A product of convection-driven interaction between crust and mantle. Chemical Geology. 2012, doi:10.1016/j.chemgeo.2012.08.007
  49. Straub SM, Zellmer GF. Volcanic arcs as archives of plate tectonic change. Gondwana Research. 2012; 21(2-3):495-516, doi:10.1016/
  50. Tang M, Wang X-, Xu X-, Zhu C, Cheng T, Yu Y. Neoproterozoic subducted materials in the generation of Mesozoic Luzong volcanic rocks: Evidence from apatite geochemistry and Hf–Nd isotopic decoupling. Gondwana Research. 2012; 21(1):266-80, doi:10.1016/
  51. Thorarinsson SB, Holm PM, Duprat HI, Tegner C. Petrology and Sr–Nd–Pb isotope geochemistry of Late Cretaceous continental rift ignimbrites, Kap Washington peninsula, North Greenland. Journal of Volcanology and Geothermal Research. 2012, doi:10.1016/j.jvolgeores.2012.01.011
  52. Till CB, Grove TL, Krawczynski MJ. A melting model for variably depleted and enriched lherzolite in the plagioclase and spinel stability fields. Journal of Geophysical Research. 2012; 117(B6), doi:10.1029/2011JB009044
  53. Timm C, de Ronde CE, Leybourne MI, Layton-Matthews D, Graham IJ. Sources of Chalcophile and Siderophile Elements in Kermadec Arc Lavas. Economic Geology. 2012; 107(8):1527-38, doi:10.2113/econgeo.107.8.1527
  54. Tirone M, SEN G, Morgan JP. Petrological geodynamic modeling of mid-ocean ridges. Physics of the Earth and Planetary Interiors. 2012; 190-191:51-70, doi:10.1016/j.pepi.2011.10.008
  55. Todd E, Gill JB, Pearce JA. A variably enriched mantle wedge and contrasting melt types during arc stages following subduction initiation in Fiji and Tonga, southwest Pacific. Earth and Planetary Science Letters. 2012; 335-336:180-94, doi:10.1016/j.epsl.2012.05.006
  56. Ulrich M, Hémond C, Nonnotte P, Jochum KP. OIB/seamount recycling as a possible process for E-MORB genesis. Geochemistry Geophysics Geosystems. 2012; 13, doi:10.1029/2012GC004078
  57. Vigneresse J-. Chemical reactivity parameters (HSAB) applied to magma evolution and ore formation. Lithos. 2012, doi:10.1016/j.lithos.2012.03.014
  58. Vigouroux N, Wallace PJ, Williams-Jones G, Kelley K, Kent AJ, Williams-Jones AE. The sources of volatile and fluid-mobile elements in the Sunda arc: A melt inclusion study from Kawah Ijen and Tambora volcanoes, Indonesia. Geochemistry Geophysics Geosystems. 2012; 13, doi:10.1029/2012GC004192
  59. Waight TE, Baker JA. Depleted Basaltic Lavas from the Proto-Iceland Plume, Central East Greenland. Journal of Petrology. 2012; 53(8):1569-96, doi:10.1093/petrology/egs026
  60. Wanless VD, Shaw AM. Lower crustal crystallization and melt evolution at mid-ocean ridges. Nature Geoscience. 2012; 5(9):651-5, doi:10.1038/ngeo1552
  61. Warren JM, Shirey SB. Lead and osmium isotopic constraints on the oceanic mantle from single abyssal peridotite sulfides. Earth and Planetary Science Letters. 2012, doi:10.1016/j.epsl.2012.09.055
  62. Xu Z, Zhao Z-, Zheng Y-. Slab–mantle interaction for thinning of cratonic lithospheric mantle in North China: Geochemical evidence from Cenozoic continental basalts in central Shandong. Lithos. 2012; 146-147:202-17, doi:10.1016/j.lithos.2012.05.019
  63. Zhang G-, Zong C-, Yin X-, Li H. Geochemical constraints on a mixed pyroxenite-peridotite source for East Pacific Rise basalts. Chemical Geology. 2012, doi:10.1016/j.chemgeo.2012.08.033
  64. Zhang Z, Kang J, Kusky T, Santosh M, Huang H, Zhang D, et al. Geochronology, geochemistry and petrogenesis of Neoproterozoic basalts from Sugetbrak, northwest Tarim block, China: Implications for the onset of Rodinia supercontinent breakup. Precambrian Research. 2012; 220-221:158-76, doi:10.1016/j.chemgeo.2012.08.033
  65. Zhang GL, Smith-Duque C, Tang S, Li H, Zarikian C, D'Hondt S, et al. Geochemistry of basalts from IODP site U1365: Implications for magmatism and mantle source signatures of the mid-Cretaceous Osbourn Trough. Lithos. 2012; 144-145:73-87, doi:10.1016/j.lithos.2012.04.014


  1. Aulinas M, Gasperini D, Gimeno D, Macera P, Fernandez-Turiel JL, Cimarelli C. Coexistence of calc-alkaline and ultrapotassic alkaline magmas at Mounts Cimini: evidence for transition from the Tuscan to the Roman Magmatic Provinces (Central Italy). Geologica Acta. 2011; 9:103-25, doi:10.1344/105.000001642
  2. Booden MA, Smith IE, Black PM, Mauk JL. Geochemistry of the Early Miocene volcanic succession of Northland, New Zealand, and implications for the evolution of subduction in the Southwest Pacific. Journal of Volcanology and Geothermal Research. 2011; 199(1-2):25-37, doi:10.1016/j.jvolgeores.2010.10.006
  3. Busigny V, Cartigny P, Philippot P. Nitrogen isotopes in ophiolitic metagabbros: A re-evaluation of modern nitrogen fluxes in subduction zones and implication for the early Earth atmosphere. Geochimica et Cosmochimica Acta. 2011; 75(23):7502-21, doi:10.1016/j.gca.2011.09.049
  4. Chauvet F, Lapierre H, Maury RC, Bosch D, Basile C, Cotten J, et al. Triassic alkaline magmatism of the Hawasina Nappes: Post-breakup melting of the Oman lithospheric mantle modified by the Permian Neotethyan Plume. Lithos. 2011; 122(1-2):122-36, doi:10.1016/j.lithos.2010.12.006
  5. Class C, le Roex A. South Atlantic DUPAL anomaly — Dynamic and compositional evidence against a recent shallow origin. Earth and Planetary Science Letters. 2011; 305(1-2):92-102, doi:10.1016/j.epsl.2011.02.036
  6. Cottrell E, Kelley KA. The oxidation state of Fe in MORB glasses and the oxygen fugacity of the upper mantle. Earth and Planetary Science Letters. 2011; 305(3-4):270-82, doi:10.1016/j.epsl.2011.03.014
  7. Day JM, Hilton DR. Origin of 3He/4He ratios in HIMU-type basalts constrained from Canary Island lavas. Earth and Planetary Science Letters. 2011; 305(1-2):226-34, doi:10.1016/j.epsl.2011.03.006
  8. De Hoog JC, Janák M, Vrabec M, Hattori KH. Ultrahigh Pressure MetamorphismUltramafic Cumulates of Oceanic Affinity in an Intracontinental Subduction Zone. Elsevier;  2011, doi:10.1016/B978-0-12-385144-4.00012-6
  9. Escuder-Viruete J, Friedman R, Castillo-Carrión M, Jabites J, Pérez-Estaún A. Origin and significance of the ophiolitic high-P mélanges in the northern Caribbean convergent margin: Insights from the geochemistry and large-scale structure of the Río San Juan metamorphic complex. Lithos. 2011; 127(3-4):483-504,doi:10.1016/j.lithos.2011.09.015
  10. Filiberto J, Dasgupta R. Fe2+–Mg partitioning between olivine and basaltic melts: Applications to genesis of olivine-phyric shergottites and conditions of melting in the Martian interior. Earth and Planetary Science Letters. 2011; 304(3-4):527-37, doi:10.1016/j.epsl.2011.02.029
  11. Frey FA, Pringle M, Meleney P, Huang S, Piotrowski A. Diverse mantle sources for Ninetyeast Ridge magmatism: Geochemical constraints from basaltic glasses. Earth and Planetary Science Letters. 2011; 303(3-4):215-24, doi:10.1016/j.epsl.2010.12.051
  12. Geldmacher J, Hoernle K, Hanan BB, Blichert-Toft J, Hauff F, Gill JB, et al. Hafnium isotopic variations in East Atlantic intraplate volcanism. Contributions to Mineralogy and Petrology. 2011; 162(1):21-36, doi:10.1007/s00410-010-0580-5
  13. Gómez-Tuena A, Mori L, Goldstein SL, Pérez-Arvizu O. Magmatic diversity of western Mexico as a function of metamorphic transformations in the subducted oceanic plate. Geochimica et Cosmochimica Acta. 2011; 75(1):213-41, doi:10.1016/j.gca.2010.09.029
  14. Haase KM, Beier C, Fretzdorff S, Leat PT, Livermore RA, Barry TL, et al. Magmatic evolution of a dying spreading axis: Evidence for the interaction of tectonics and mantle heterogeneity from the fossil Phoenix Ridge, Drake Passage. Chemical Geology. 2011; 280(1-2):115-25, doi:10.1016/j.chemgeo.2010.11.002
  15. Hamelin C, Dosso L, Hanan BB, Moreira M, Kositsky AP, Thomas MY. Geochemical portray of the Pacific Ridge: New isotopic data and statistical techniques. Earth and Planetary Science Letters. 2011; 302(1-2):154-62, doi:10.1016/j.epsl.2010.12.007
  16. Head EM, Shaw AM, Wallace PJ, Sims KW, Carn SA. Insight into volatile behavior at Nyamuragira volcano (D.R. Congo, Africa) through olivine-hosted melt inclusions. Geochemistry Geophysics Geosystems. 2011; 12, doi:10.1029/2011GC003699
  17. Hein A, Kilikoglou V. Ceradat-prototype of a web-based relational database for Archeaological ceramics. Archaeometry. 2011; 54(2):230-43, doi:10.1111/j.1475-4754.2011.00618.x
  18. Helo C, Longpré M-, Shimizu N, Clague DA, Stix J. Explosive eruptions at mid-ocean ridges driven by CO2-rich magmas. Nature Geoscience. 2011; 4(4):260-3, doi:10.1038/ngeo1104
  19. Herzberg C. Identification of Source Lithology in the Hawaiian and Canary Islands: Implications for Origins. Journal of Petrology. 2011; 52(1):113-46, doi:10.1093/petrology/egq075
  20. Hoernle K, Hauff F, Werner R, van den Bogaard P, Gibbons AD, Conrad S, et al. Origin of Indian Ocean Seamount Province by shallow recycling of continental lithosphere. Nature Geoscience. 2011; 4(12):883-7, doi:10.1038/ngeo1331
  21. Ishizuka O, Tani K, Reagan MK, Kanayama K, Umino S, Harigane Y, et al. The timescales of subduction initiation and subsequent evolution of an oceanic island arc. Earth and Planetary Science Letters. 2011; 306(3-4):229-40, doi:10.1016/j.epsl.2011.04.006
  22. Kamenov GD, Perfit MR, Lewis JF, Goss AR, Arévalo R, Shuster RD. Ancient lithospheric source for Quaternary lavas in Hispaniola. Nature Geoscience. 2011; 4(8):554-7, doi:10.1038/ngeo1203
  23. Marques AF, Scott SD, Guillong M. Magmatic degassing of ore-metals at the Menez Gwen: Input from the Azores plume into an active Mid-Atlantic Ridge seafloor hydrothermal system. Earth and Planetary Science Letters. 2011; 310(1-2):145-60, doi:10.1016/j.epsl.2011.07.021
  24. Martini M, Mori L, Solari L, Centeno-García E. Sandstone Provenance of the Arperos Basin (Sierra de Guanajuato, Central Mexico): Late Jurassic–Early Cretaceous Back-Arc Spreading as the Foundation of the Guerrero Terrane. The Journal of Geology. 2011; 119(6):597-617, doi:10.1086/661989
  25. Moore DE, Rymer MJ. Correlation of clayey gouge in a surface exposure of serpentinite in the San Andreas Fault with gouge from the San Andreas Fault Observatory at Depth (SAFOD). Journal of Structural Geology. 2011, doi:10.1016/j.jsg.2011.11.014
  26. Mottl MJ, Seewald JS, Wheat GC, Tivey MK, Michael PJ, Proskurowski G, et al. Chemistry of hot springs along the Eastern Lau Spreading Center. Geochimica et Cosmochimica Acta. 2011; 75(4):1013-38, doi:10.1016/j.gca.2010.12.008
  27. Nauret F, Snow JE, Hellebrand E, Weis D. Geochemical Composition of K-rich Lavas from the Lena Trough (Arctic Ocean). Journal of Petrology. 2011; 52(6):1185-206, doi:10.1093/petrology/egr024
  28. Nebel O, Mezger K, van Westrenen W. Rubidium isotopes in primitive chondrites: Constraints on Earth's volatile element depletion and lead isotope evolution. Earth and Planetary Science Letters. 2011; 305(3-4):309-16, doi:10.1016/j.epsl.2011.03.009
  29. Peyve AA. Seamounts in the east of South Atlantic: Origin and correlation with Mesozoic-Cenozoic magmatic structures of West Africa. Geotectonics. 2011; 45(3):195-209, doi:10.1134/S0016852111030058
  30. Pilet S, Baker MB, Muntener O, Stolper EM. Monte Carlo Simulations of Metasomatic Enrichment in the Lithosphere and Implications for the Source of Alkaline Basalts. Journal of Petrology. 2011; 52(7-8):1415-42, doi:10.1093/petrology/egr007
  31. Presnall DC, Gudfinnsson GH. Oceanic Volcanism from the Low-velocity Zone - without Mantle Plumes. Journal of Petrology. 2011; 52(7-8):1533-46, doi:/10.1093/petrology/egq093
  32. Putirka K, Ryerson FJ, Perfit M, Ridley WI. Mineralogy and Composition of the Oceanic Mantle. Journal of Petrology. 2011; 52(2):279-313, doi:10.1093/petrology/egq080
  33. Rauch JN. Global distributions of Fe, Al, Cu, and Zn contained in Earth's derma layers. Journal of Geochemical Exploration. 2011; 110(2):193-201, doi:10.1016/j.gexplo.2011.05.008
  34. Salters VJ, Mallick S, Hart SR, Langmuir CE, Stracke A. Domains of depleted mantle: New evidence from hafnium and neodymium isotopes. Geochemistry Geophysics Geosystems. 2011; 12(8), doi:10.1029/2011GC003617
  35. Sano T, Sakuyama T, Ingle S, Rodriguez S, Yamasaki T. Petrological relationships among lavas, dikes, and gabbros from Integrated Ocean Drilling Program Hole 1256D: Insight into the magma plumbing system beneath the East Pacific Rise. Geochemistry Geophysics Geosystems. 2011; 12(6), doi:10.1029/2011GC003548
  36. Schmitt AK, Perfit MR, Rubin KH, Stockli DF, Smith MC, Cotsonika LA, et al. Rapid cooling rates at an active mid-ocean ridge from zircon thermochronology. Earth and Planetary Science Letters. 2011; 302(3-4):349-5, doi:10.1016/j.epsl.2010.12.022
  37. Schuth S, König S, Münker C. Subduction zone dynamics in the SW Pacific plate boundary region constrained from high-precision Pb isotope data. Earth and Planetary Science Letters. 2011; 311(3-4):328-38, doi:10.1016/j.epsl.2011.09.006
  38. Sen G. Deccan Traps Flood Basalt Province: An Evaluation of the Thermochemical Plume Model. In: Ray J, Sen G, Ghosh B, editors. Topics in Igneous Petrology. Dordrecht: Springer Netherlands;  2011. p. 29-53, doi:10.1007/978-90-481-9600-5_2
  39. Shervais JW, Choi SH, Sharp WD, Ross J, Zoglman-Schuman M, Mukasa SB. Geological Society of America Special Papers Mélanges: Processes of Formation and Societal Significance Serpentinite matrix mélange: Implications of mixed provenance for mélange formation. Vol 480. Geological Society of America;  2011, doi: 10.1130/2011.2480(01)
  40. Shimoda G, Ishizuka O, Yamashita K, Yoshitake M, Ogasawara M, Yuasa M. Tectonic influence on chemical composition of ocean island basalts in the West and South Pacific: Implication for a deep mantle origin. Geochemistry Geophysics Geosystems. 2011; 12(7), doi:10.1029/2011GC003531
  41. Solari LA, Gomex-Tuena A, Ortega-Gutierrez F, Ortega-Obregon C. The Chuacus Metamorphic Complex, central Guatemala: geochronological and geochemical constraints on its Paleozoic-Mesozoic evolution. Geologica Acta. 2011; 9(3-4):329-50, doi:10.1344/105.000001695
  42. Stroncik NA, Devey CW. Recycled gabbro signature in hotspot magmas unveiled by plume–ridge interactions. Nature Geoscience. 2011; 4(6):393-7, doi:10.1038/ngeo1121
  43. Thorarinsson SB, Holm PM, Duprat H, Tegner C. Silicic magmatism associated with Late Cretaceous rifting in the Arctic Basin—petrogenesis of the Kap Kane sequence, the Kap Washington Group volcanics, North Greenland. Lithos. 2011; 125(1-2):65-85, doi:10.1016/j.lithos.2011.01.013
  44. Van den Bleeken G, Müntener O, Ulmer P. Melt variability in percolated peridotite: an experimental study applied to reactive migration of tholeiitic basalt in the upper mantle. Contributions to Mineralogy and Petrology. 2011; 161(6):921-45, doi:10.1007/s00410-010-0572-5
  45. Vervoort JD, Plank T, Prytulak J. The Hf–Nd isotopic composition of marine sediments. Geochimica et Cosmochimica Acta. 2011; 75(20):5903-26, doi:10.1016/j.gca.2011.07.046
  46. Waters CL, Sims KW, Perfit MR, Blichert-Toft J, Blusztajn J. Perspective on the Genesis of E-MORB from Chemical and Isotopic Heterogeneity at 9-10 N East Pacific Rise. Journal of Petrology. 2011; 52(3):565-602, doi:10.1093/petrology/egq091
  47. Yamagishi Y, Suzuki K, Tamura H, Yanaka H, Tsuboi S. Visualization of geochemical data for rocks and sediments in Google Earth: Development of a data converter application for geochemical and isotopic data sets in database systems. Geochemistry, Geophysics, Geosystems. 2011; 12(3), doi:10.1029/2010GC003490
  48. Yan Q, Shi X. Geological comparative studies of Japan arc system and Kyushu-Palau arc. Acta Oceanologica Sinica. 2011; 30(4):107-21, doi:10.1007/s13131-011-0134-3


  1. Arevalo R, McDonough WF. Chemical variations and regional diversity observed in MORB. Chemical Geology. 2010; 271(1-2):70-85, doi:10.1016/j.chemgeo.2009.12.013
  2. Armienti P, Gasperini D. Isotopic evidence for chaotic imprint in upper mantle heterogeneity. Geochemistry Geophysics Geosystems. 2010; 11, doi:10.1029/2009GC002798
  3. Barker AK, Coogan LA, Gillis KM, Hayman NW, Weis D. Direct observation of a fossil high-temperature, fault-hosted, hydrothermal upflow zone in crust formed at the East Pacific Rise. Geology. 2010; 38:379-82, doi:10.1130/G30542.1
  4. Berger J, Féménias O, Ohnenstetter D, Bruguier O, Plissart G, Mercier J-, et al. New occurrence of UHP eclogites in Limousin (French Massif Central): Age, tectonic setting and fluid–rock interactions. Lithos. 2010; 118:365-82, doi:10.1016/j.lithos.2010.05.013
  5. Blatter DL, Hammersley L. Impact of the Orozco Fracture Zone on the central Mexican Volcanic Belt. Journal of Volcanology and Geothermal Research. 2010; 197(1-4):67-84, doi:10.1016/j.jvolgeores.2009.08.002
  6. Chalot-prat F, Falloon TJ, Green DH, Hibberson WO. An Experimental Study of Liquid Compositions in Equilibrium with Plagioclase + Spinel Lherzolite at Low Pressures (0.75 GPa). Journal of Petrology. 2010; 51:2349-76, doi:/10.1093/petrology/egq060
  7. Clowes R, Wyman D, Kerrich R. Mantle plume – volcanic arc interaction: consequences for magmatism, metallogeny, and cratonization in the Abitibi and Wawa subprovinces, Canada. Canadian Journal of Earth Sciences. 2010; 47(5):565-89, doi:10.1139/E09-049
  8. Collier ML, Kelemen PB. The Case for Reactive Crystallization at Mid-Ocean Ridges. Journal of Petrology. 2010; 51:1913-40, doi: 10.1093/petrology/egq043
  9. Cousens, B., Igneous Rock Associations, 11. The Geology and Petrology of Seafloor Volcanic Rocks of the Northeastern Pacific Ocean, Offshore Canada, Geoscience Canada, 2010: 37(2).
  10. Dasgupta R, Hirschmann MM. The deep carbon cycle and melting in Earth’s interior. Earth and Planetary Science Letters. 2010; 298:1-13, doi:10.1016/j.epsl.2010.06.039
  11. Dasgupta R, Jackson MG, LEE C-. Major element chemistry of ocean island basalts — Conditions of mantle melting and heterogeneity of mantle source. Earth and Planetary Science Letters. 2010; 289(3-4):377-92, doi:10.1016/j.epsl.2009.11.027
  12. Day JM, Pearson GD, Macpherson CG, Lowry D, Carracedo JC. Evidence for distinct proportions of subducted oceanic crust and lithosphere in HIMU-type mantle beneath El Hierro and La Palma, Canary Islands. Geochimica et Cosmochimica Acta. 2010; 74:6565-89, doi:10.1016/j.gca.2010.08.021
  13. Ellam RM. The graphical presentation of lead isotope data for environmental source apportionment. Science of The Total Environment. 2010; 408:3490-2, doi:10.1016/j.scitotenv.2010.03.037
  14. Escuder-Viruete J, Pérez-Estaún A, Weis D, Friedman R. Geochemical characteristics of the Río Verde Complex, Central Hispaniola: Implications for the paleotectonic reconstruction of the Lower Cretaceous Caribbean island-arc. Lithos. 2010; 114(1-2):168-85, doi:10.1016/j.lithos.2009.08.007
  15. Gerbode C, Dasgupta R. Carbonate-fluxed Melting of MORB-like Pyroxenite at 2.9 GPa and Genesis of HIMU Ocean Island Basalts. Journal of Petrology. 2010; 51:2067-88, doi:10.1093/petrology/egq049
  16. Grange M, Scharer U, Merle R, Girardeau J, Cornen G. Plume-Lithosphere Interaction during Migration of Cretaceous Alkaline Magmatism in SW Portugal: Evidence from U-Pb Ages and Pb-Sr-Hf Isotopes. Journal of Petrology. 2010; 51:1143-70, doi:10.1093/petrology/egq018
  17. Hamelin C, Dosso L, Hanan B, Barrat J-, Ondréas H. Sr-Nd-Hf isotopes along the Pacific Antarctic Ridge from 41 to 53°S. Geophysical Research Letters. 2010; 37, doi:10.1029/2010GL042979
  18. Heinonen JS, Carlson RW, Luttinen AV. Isotopic (Sr, Nd, Pb, and Os) composition of highly magnesian dikes of Vestfjella, western Dronning Maud Land, Antarctica: A key to the origins of the Jurassic Karoo large igneous province? Chemical Geology. 2010; 277:227-44, doi:10.1016/j.chemgeo.2010.08.004
  19. Iwamori H, Albaréde F, Nakamura H. Global structure of mantle isotopic heterogeneity and its implications for mantle differentiation and convection. Earth and Planetary Science Letters. 2010; 299:339-51, doi:10.1016/j.epsl.2010.09.014
  20. Labanieh S, Chauvel C, Germa A, Quidelleur X, Lewin E. Isotopic hyperbolas constrain sources and processes under the Lesser Antilles arc. Earth and Planetary Science Letters. 2010; 298:35-46, doi:10.1016/j.epsl.2010.07.018
  21. Malaviarachchi SP, Makishima A, Nakamura E. Melt-Peridotite Reactions and Fluid Metasomatism in the Upper Mantle, Revealed from the Geochemistry of Peridotite and Gabbro from the Horoman Peridotite Massif, Japan. Journal of Petrology. 2010; 51:1417-45, doi:10.1093/petrology/egq024
  22. Nauret F, Moreira M, Snow JE. Rare gases in lavas from the ultraslow spreading Lena Trough, Arctic Ocean. Geochemistry Geophysics Geosystems. 2010; 11, doi:10.1029/2010GC003027
  23. Paulick H, Münker C, Schuth S. The influence of small-scale mantle heterogeneities on Mid-Ocean Ridge volcanism: Evidence from the southern Mid-Atlantic Ridge (7°30'S to 11°30'S) and Ascension Island. Earth and Planetary Science Letters. 2010; 296:299-310, doi:10.1016/j.epsl.2010.05.009
  24. Pearce JA, Robinson PT. The Troodos ophiolitic complex probably formed in a subduction initiation, slab edge setting. Gondwana Research. 2010; 18(1):60-81, doi:10.1016/
  25. Prelević D, Stracke A, Foley SF, Romer RL, Conticelli S. Hf isotope compositions of Mediterranean lamproites: Mixing of melts from asthenosphere and crustally contaminated mantle lithosphere. Lithos. 2010; 119:297-312, doi:10.1016/j.lithos.2010.07.007
  26. Reagan MK, Ishizuka O, Stern RJ, Kelley KA, Ohara Y, Blichert-Toft J, et al. Fore-arc basalts and subduction initiation in the Izu-Bonin-Mariana system. Geochemistry Geophysics Geosystems. 2010; 11, doi:10.1029/2009GC002871
  27. Regelous M, Gamble JA, Turner SP. Mechanism and timing of Pb transport from subducted oceanic crust and sediment to the mantle source of arc lavas. Chemical Geology. 2010; 273:46-54, doi:10.1016/j.chemgeo.2010.02.011
  28. le Roex A, Class C, O’Connor J, Jokat W. Shona and Discovery Aseismic Ridge Systems, South Atlantic: Trace Element Evidence for Enriched Mantle Sources. Journal of Petrology. 2010; 51:2089-120, doi:10.1093/petrology/egq050
  29. Roonwal GS. Discussion: Petrography and Mineral Chemistry of Neovolcanics Occurring between Pacific and Nazca Plate Boundaries, by S.K. Pandey, J.P. Shrivastava and G.S. Roonwal. Jour. Geol. Soc. India, v.74, 2009, pp.559–572. Journal of the Geological Society of India. 2010; 75:441-2, doi:10.1007/s12594-009-0169-7
  30. Ruscitto DM, Wallace PJ, Johnson ER, Kent AJ, Bindeman IN. Volatile contents of mafic magmas from cinder cones in the Central Oregon High Cascades: Implications for magma formation and mantle conditions in a hot arc. Earth and Planetary Science Letters. 2010; 298:153-61, doi:10.1016/j.epsl.2010.07.037
  31. Salters VJ, Sachi-Kocher A. An ancient metasomatic source for the Walvis Ridge basalts. Chemical Geology. 2010; 273:151-67, doi:10.1016/j.chemgeo.2010.02.010
  32. Shaw AM, Behn MD, Humphris SE, Sohn RA, Gregg PM. Deep pooling of low degree melts and volatile fluxes at the 85°E segment of the Gakkel Ridge: Evidence from olivine-hosted melt inclusions and glasses. Earth and Planetary Science Letters. 2010; 289(3-4):311-22, doi:10.1016/j.epsl.2009.11.018
  33. Straub SM, Goldstein SL, Class C, Schmidt A, Gomez-Tuena A. Slab and Mantle Controls on the Sr-Nd-Pb-Hf Isotope Evolution of the Post 42 Ma Izu-Bonin Volcanic Arc. Journal of Petrology. 2010; 51:993-1026, doi:10.1093/petrology/egq009
  34. Tang G, Wang Q, Wyman DA, Li Z-, Zhao Z-, Jia X-, et al. Ridge subduction and crustal growth in the Central Asian Orogenic Belt: Evidence from Late Carboniferous adakites and high-Mg diorites in the western Junggar region, northern Xinjiang (west China). Chemical Geology. 2010; 277:281-300, doi:10.1016/j.chemgeo.2010.08.012
  35. Teklay M, Scherer EE, Mezger K, Danyushevsky L. Geochemical characteristics and Sr–Nd–Hf isotope compositions of mantle xenoliths and host basalts from Assab, Eritrea: implications for the composition and thermal structure of the lithosphere beneath the Afar Depression. Contributions to Mineralogy and Petrology. 2010; 159:731-51, doi:10.1007/s00410-009-0451-0
  36. Tollstrup D, Gill J, Kent A, Prinkey D, Williams R, Tamura Y, et al. Across-arc geochemical trends in the Izu-Bonin arc: Contributions from the subducting slab, revisited. Geochemistry Geophysics Geosystems. 2010; 11, doi:10.1029/2009GC002847
  37. Tuff J, O’Neill HS. The effect of sulfur on the partitioning of Ni and other first-row transition elements between olivine and silicate melt. Geochimica et Cosmochimica Acta. 2010; 74:6180-205, doi:10.1016/j.gca.2010.08.014
  38. Wakabayashi J, Ghatak A, Basu AR. Suprasubduction-zone ophiolite generation, emplacement, and initiation of subduction: A perspective from geochemistry, metamorphism, geochronology, and regional geology. Geological Society of America Bulletin. 2010; 122:1548-68, doi:10.1130/B30017.1
  39. Wanless VD, Perfit MR, Ridley WI, Klein E. Dacite Petrogenesis on Mid-Ocean Ridges: Evidence for Oceanic Crustal Melting and Assimilation. Journal of Petrology. 2010; 51:2377-410, doi:10.1093/petrology/egq056
  40. Zhang GL, Zeng ZG. Genesis of 230Th excess in basalts from mid-ocean ridges and ocean islands: Constraints from the global U-series isotope database and major and rare earth element geochemistry. Science China Earth Sciences. 2010; 53:1486-94, doi:10.1007/s11430-010-4038-4
  41. Zimmer MM, Plank T, Hauri EH, Yogodzinski GM, Stelling P, Larsen J, et al. The Role of Water in Generating the Calc-alkaline Trend: New Volatile Data for Aleutian Magmas and a New Tholeiitic Index. Journal of Petrology. 2010; 51:2411-44, doi:10.1093/petrology/egq062


  1. Arevalo R, McDonough WF, Luong M. The K/U ratio of the silicate Earth: Insights into mantle composition, structure and thermal evolution. Earth and Planetary Science Letters. 2009; 278(3-4):361-9, doi:10.1016/j.epsl.2008.12.023
  2. Baker RG, Rehkämper M, Hinkley TK, Nielsen SG, Toutain JP. Investigation of thallium fluxes from subaerial volcanism—Implications for the present and past mass balance of thallium in the oceans. Geochimica et Cosmochimica Acta. 2009; 73(20):6340-59, doi:10.1016/j.gca.2009.07.014
  3. Bézos A, Escrig S, Langmuir CH, Michael PJ, Asimow PD. Origins of chemical diversity of back-arc basin basalts: A segment-scale study of the Eastern Lau Spreading Center. Journal of Geophysical Research. 2009; 114(B6), doi:10.1029/2008JB005924
  4. Chadwick J, Perfit M, McInnes B, Kamenov G, Plank T, Jonasson I, et al. Arc lavas on both sides of a trench: Slab window effects at the Solomon Islands triple junction, SW Pacific. Earth and Planetary Science Letters. 2009; 279(3-4):293-302, doi:10.1016/j.epsl.2009.01.001
  5. Chauvel C, Marini J-, Plank T, Ludden JN. Hf-Nd input flux in the Izu-Mariana subduction zone and recycling of subducted material in the mantle. Geochemistry Geophysics Geosystems. 2009; 10(1), doi:10.1029/2008GC002101
  6. Cipriani A, Bonatti E, Seyler M, Brueckner HK, Brunelli D, Dallai L, et al. A 19 to 17 Ma amagmatic extension event at the Mid-Atlantic Ridge: Ultramafic mylonites from the Vema Lithospheric Section. Geochemistry Geophysics Geosystems. 2009; 10(10), doi:10.1029/2009GC002534
  7. Clague DA, Calvert AT. Postshield stage transitional volcanism on Mahukona Volcano, Hawaii. Bulletin of Volcanology. 2009; 71(5):533-9, doi:10.1007/s00445-008-0240-z
  8. Class C, Goldstein SL, Shirey SB. Osmium isotopes in Grande Comore lavas: A new extreme among a spectrum of EM-type mantle endmembers. Earth and Planetary Science Letters. 2009; 284(1-2):219-27, doi:10.1016/j.epsl.2009.04.031
  9. Cole RB, Stewart BW. Continental margin volcanism at sites of spreading ridge subduction: Examples from southern Alaska and western California. Tectonophysics. 2009; 464(1-4):118-36, doi:10.1016/j.tecto.2007.12.005
  10. Das P, Iyer SD. Geochemical characterization of oceanic basalts using Artificial Neural Network. Geochemical Transactions. 2009; 10(1):13, doi:10.1186/1467-4866-10-13
  11. Davies GF. Reconciling the geophysical and geochemical mantles: Plume flows, heterogeneities, and disequilibrium. Geochemistry Geophysics Geosystems. 2009; 10(10), doi:10.1029/2009GC002634
  12. Escrig S, Bézos A, Goldstein SL, Langmuir CH, Michael PJ. Mantle source variations beneath the Eastern Lau Spreading Center and the nature of subduction components in the Lau basin–Tonga arc system. Geochemistry Geophysics Geosystems. 2009; 10(4), doi:10.1029/2008GC002281
  13. Godard M, Awaji S, Hansen H, Hellebrand E, Brunelli D, Johnson K, et al. Geochemistry of a long in-situ section of intrusive slow-spread oceanic lithosphere: Results from IODP Site U1309 (Atlantis Massif, 30°N Mid-Atlantic-Ridge). Earth and Planetary Science Letters. 2009; 279(1-2):110-22, doi:10.1016/j.epsl.2008.12.034
  14. Granot R, Cande SC, Gee JS. The implications of long-lived asymmetry of remanent magnetization across the North Pacific fracture zones. Earth and Planetary Science Letters. 2009; 288(3-4):551-63, doi:10.1016/j.epsl.2009.10.017
  15. Grimes CB, John BE, Cheadle MJ, Mazdab FK, Wooden JL, Swapp S, et al. On the occurrence, trace element geochemistry, and crystallization history of zircon from in situ ocean lithosphere. Contributions to Mineralogy and Petrology. 2009; 158(6):757-83, doi:10.1007/s00410-009-0409-2
  16. Haase KM, Fretzdorff S, Mühe R, Garbe-Schönberg D, Stoffers P. A geochemical study of off-axis seamount lavas at the Valu Fa Ridge: Constraints on magma genesis and slab contributions in the southern Tonga subduction zone. Lithos. 2009; 112(1-2):137-48, doi:10.1016/j.lithos.2009.05.041
  17. Hahm D, Castillo PR, Hilton DR. A deep mantle source for high 3 He/ 4 He ocean island basalts (OIB) inferred from Pacific near-ridge seamount lavas. Geophysical Research Letters. 2009; 36(20), doi:10.1029/2009GL040560
  18. Humphreys ER, Niu Y. On the composition of ocean island basalts (OIB): The effects of lithospheric thickness variation and mantle metasomatism. Lithos. 2009; 112(1-2):118-36, doi:10.1016/j.lithos.2009.04.038
  19. Ickert RB, Thorkelson DJ, Marshall DD, Ullrich TD. Eocene adakitic volcanism in southern British Columbia: Remelting of arc basalt above a slab window. Tectonophysics. 2009; 464(1-4):164-85, doi:10.1016/j.tecto.2007.10.007
  20. Jackson MG, Kurz MD, Hart SR. Helium and neon isotopes in phenocrysts from Samoan lavas: Evidence for heterogeneity in the terrestrial high 3He/4He mantle. Earth and Planetary Science Letters. 2009; 287(3-4):519-28, doi:10.1016/j.epsl.2009.08.039
  21. Kelley KA, Cottrell E. Water and the Oxidation State of Subduction Zone Magmas. Science. 2009; 325(5940):605-7, doi:10.1126/science.1174156
  22. Khan SD, Walker DJ, Hall SA, Burke KC, Shah MT, Stockli L. Did the Kohistan-Ladakh island arc collide first with India? Geological Society of America Bulletin. 2009; 121(3-4):366-84, doi:10.1130/B26348.1
  23. Lambart S, Laporte D, Schiano P. An experimental study of focused magma transport and basalt–peridotite interactions beneath mid-ocean ridges: implications for the generation of primitive MORB compositions. Contributions to Mineralogy and Petrology. 2009; 157(4):429-51, doi:10.1007/s00410-008-0344-7
  24. Leeman WP, Schutt DL, Hughes SS. Thermal structure beneath the Snake River Plain: Implications for the Yellowstone hotspot. Journal of Volcanology and Geothermal Research. 2009; 188(1-3):57-67, doi:10.1016/j.jvolgeores.2009.01.034
  25. Machida S, Hirano N, Kimura J-. Evidence for recycled plate material in Pacific upper mantle unrelated to plumes. Geochimica et Cosmochimica Acta. 2009; 73(10):3028-37, doi:10.1016/j.gca.2009.01.026
  26. Marques AF, Scott SD, Gorton MP, Barriga FJ, Fouquet Y. Pre-eruption history of enriched MORB from the Menez Gwen (37°50N) and Lucky Strike (37°17N) hydrothermal systems, Mid-Atlantic Ridge. Lithos. 2009; 112(1-2):18-39, doi:10.1016/j.lithos.2009.05.026
  27. Merle R, Jourdan F, Marzoli A, Renne PR, Grange M, Girardeau J. Evidence of multi-phase Cretaceous to Quaternary alkaline magmatism on Tore-Madeira Rise and neighbouring seamounts from 40Ar/39Ar ages. Journal of the Geological Society. 2009; 166(5):879-94, doi:10.1144/0016-76492008-060
  28. Mori L, Gomez-Tuena A, Schaaf P, Goldstein SL, Perez-Arvizu O, SolIs-Pichardo G. Lithospheric Removal as a Trigger for Flood Basalt Magmatism in the Trans-Mexican Volcanic Belt. Journal of Petrology. 2009; 50(11):2157-86, doi:10.1093/petrology/egp072
  29. Nesbitt HW, Young GM, Bosman SA, Longstaffe FJ. Oceanic spreading center-generated basaltic crust and associated sulfidic and carbonate-rich hydrothermal deposits in the Archean (ca. 3 Ga), North Spirit Lake greenstone belt, Ontario, Canada. Geological Society of America Bulletin. 2009; 121(11-12):1562-9, doi:10.1130/B26496.1
  30. Niu Y, O'Hara MJ. MORB mantle hosts the missing Eu (Sr, Nb, Ta and Ti) in the continental crust: New perspectives on crustal growth, crust–mantle differentiation and chemical structure of oceanic upper mantle. Lithos. 2009; 112(1-2):1-17, doi:10.1016/j.lithos.2008.12.009
  31. Page P, Barnes S-. Using Trace Elements in Chromites to Constrain the Origin of Podiform Chromitites in the Thetford Mines Ophiolite, Quebec, Canada. Economic Geology. 2009; 104(7):997-1018, doi:10.2113/econgeo.104.7.997
  32. Perez-Gutierrez R, Solari LA, Gomez-Tuena A, Martens U. Mesozoic geologic evolutions of the Xolapa migmatitic complex north of Acapulco, southern Mexico: implications for paleogeographic reconstructions. Revista Mexicana de Ciencias Geologicas. 2009; 26(1):201-21,
  33. Pollock MA, Klein EM, Karson JA, Coleman DS. Compositions of dikes and lavas from the Pito Deep Rift: Implications for crustal accretion at superfast spreading centers. Journal of Geophysical Research. 2009; 114(B3), doi:10.1029/2007JB005436
  34. Porter KA, White WM. Deep mantle subduction flux. Geochemistry Geophysics Geosystems. 2009; 10(12), doi:10.1029/2009GC002656
  35. Portnyagin M, Hoernle K, Savelyev D. Ultra-depleted melts from Kamchatkan ophiolites: Evidence for the interaction of the Hawaiian plume with an oceanic spreading center in the Cretaceous? Earth and Planetary Science Letters. 2009; 287(1-2):194-204, doi:10.1016/j.epsl.2009.07.042
  36. Puffer JH, Block KA, Steiner JC. Transmission of Flood Basalts through a Shallow Crustal Sill and the Correlation of Sill Layers with Extrusive Flows: The Palisades Intrusive System and the Basalts of the Newark Basin, New Jersey, U.S.A. The Journal of Geology. 2009; 117(2):139-55, doi:10.1086/595663
  37. Rubin KH, Sinton JM, Maclennan J, Hellebrand E. Magmatic filtering of mantle compositions at mid-ocean-ridge volcanoes. Nature Geoscience. 2009; 2(5):321-8, doi:10.1038/ngeo504
  38. Shimoda G. Genetic link between EMI and EMII: An adakite connection. Lithos. 2009; 112(3-4):591-602, doi:10.1016/j.lithos.2009.05.025
  39. Sobolev AV, Krivolutskaya NA, Kuzmin DV. Petrology of the parental melts and mantle sources of Siberian trap magmatism. Petrology. 2009; 17(3):253-86,doi:10.1134/S0869591109030047
  40. Spear FS, Hallett B, Pyle JM, Adalı S, Szymanski BK, Waters A, et al. MetPetDB: A database for metamorphic geochemistry. Geochemistry Geophysics Geosystems. 2009; 10(12), doi:10.1029/2009GC002766
  41. Starkey NA, Stuart FM, Ellam RM, Fitton GJ, Basu S, Larsen LM. Helium isotopes in early Iceland plume picrites: Constraints on the composition of high 3He/4He mantle. Earth and Planetary Science Letters. 2009; 277(1-2):91-100, doi:10.1016/j.epsl.2008.10.007
  42. Straub SM, Goldstein SL, Class C, Schmidt A. Mid-ocean-ridge basalt of Indian type in the northwest Pacific Ocean basin. Nature Geoscience. 2009; 2(4):286-9, doi:10.1038/ngeo471
  43. Vásquez P, Glodny J, Franz G, Romer RL, Gerdes A. Origin of fayalite granitoids: New insights from the Cobquecura Pluton, Chile, and its metapelitic xenoliths. Lithos. 2009; 110(1-4):181-98, doi:10.1016/j.lithos.2009.01.001
  44. Warren JM, Shimizu N, Sakaguchi C, Dick HJ, Nakamura E. An assessment of upper mantle heterogeneity based on abyssal peridotite isotopic compositions. Journal of Geophysical Research. 2009; 114(B12), doi:10.1029/2008JB006186


  1. Barker AK, Coogan LA, Gillis KM, Weis D. Strontium isotope constraints on fluid flow in the sheeted dike complex of fast spreading crust: Pervasive fluid flow at Pito Deep. Geochemistry Geophysics Geosystems. 2008; 9(6), doi:10.1029/2007GC001901
  2. Blichert-Toft J, Albarède F. Hafnium isotopes in Jack Hills zircons and the formation of the Hadean crust. Earth and Planetary Science Letters. 2008; 265(3-4):686-702, doi:10.1016/j.epsl.2007.10.054
  3. Botcharnikov RE, Almeev RR, Koepke J, Holtz F. Phase Relations and Liquid Lines of Descent in Hydrous Ferrobasalt--Implications for the Skaergaard Intrusion and Columbia River Flood Basalts. Journal of Petrology. 2008; 49(9):1687-727, doi:10.1093/petrology/egn043
  4. Brandenburg JP, Hauri EH, van Keken PE, Ballentine CJ. A multiple-system study of the geochemical evolution of the mantle with force-balanced plates and thermochemical effects. Earth and Planetary Science Letters. 2008; 276(1-2):1-13, doi:10.1016/j.epsl.2008.08.027
  5. Cannat M, Sauter D, Bezos A, Meyzen C, Humler E, Le Rigoleur M. Spreading rate, spreading obliquity, and melt supply at the ultraslow spreading Southwest Indian Ridge. Geochemistry, Geophysics, Geosystems. 2008; 9(4), doi:10.1029/2007GC001676
  6. Carpentier M, Chauvel C, Mattielli N. Pb–Nd isotopic constraints on sedimentary input into the Lesser Antilles arc system. Earth and Planetary Science Letters. 2008; 272(1-2):199-211, doi:10.1016/j.epsl.2008.04.036
  7. Cartigny P, Pineau F, Aubaud C, Javoy M. Towards a consistent mantle carbon flux estimate: Insights from volatile systematics (H2O/Ce, δD, CO2/Nb) in the North Atlantic mantle (14° N and 34° N). Earth and Planetary Science Letters. 2008; 265(3-4):672-85, doi:10.1016/j.epsl.2007.11.011
  8. Chauvel C, Lewin E, Carpentier M, Arndt NT, Marini J-. Role of recycled oceanic basalt and sediment in generating the Hf–Nd mantle array. Nature Geoscience. 2008; 1(1):64-7, doi:10.1038/ngeo.2007.51
  9. Chauvet F, Lapierre H, Bosch D, Guillot S, Mascle G, Vannay J-, et al. Geochemistry of the Panjal Traps basalts (NW Himalaya): records of the Pangea Permian break-up. Bulletin de la Societe Geologique de France. 2008; 179(4):383-95, doi:10.2113/gssgfbull.179.4.383
  10. Coe N, Roex A, Gurney J, Pearson GD, Nowell G. Petrogenesis of the Swartruggens and Star Group II kimberlite dyke swarms, South Africa: constraints from whole rock geochemistry. Contributions to Mineralogy and Petrology. 2008; 156(5):627-52, doi:10.1007/s00410-008-0305-1
  11. Dilek Y, Furnes H, Shallo M. Geochemistry of the Jurassic Mirdita Ophiolite (Albania) and the MORB to SSZ evolution of a marginal basin oceanic crust. Lithos. 2008; 100(1-4):174-209, doi:10.1016/j.lithos.2007.06.026
  12. Escartín J, Smith DK, Cann J, Schouten H, Langmuir CH, Escrig S. Central role of detachment faults in accretion of slow-spreading oceanic lithosphere. Nature. 2008; 455(7214):790-4, doi:10.1038/nature07333
  13. Escuder Viruete J, Joubert M, Urien P, Friedman R, Weis D, Ullrich T, et al. Caribbean island-arc rifting and back-arc basin development in the Late Cretaceous: Geochemical, isotopic and geochronological evidence from Central Hispaniola. Lithos. 2008; 104(1-4):378-404, doi:10.1016/j.lithos.2008.01.003
  14. Falloon TJ, Danyushevsky LV, Crawford AJ, Meffre S, Woodhead JD, Bloomer SH. Boninites and Adakites from the Northern Termination of the Tonga Trench: Implications for Adakite Petrogenesis. Journal of Petrology. 2008; 49(4):697-715, doi:10.1093/petrology/egm080
  15. Goldstein SL, Soffer G, Langmuir CH, Lehnert KA, Graham DW, Michael PJ. Origin of a ‘Southern Hemisphere’ geochemical signature in the Arctic upper mantle. Nature. 2008; 453(7191):89-93, doi:10.1038/nature06919
  16. Grimes CB, John BE, Cheadle MJ, Wooden JL. Protracted construction of gabbroic crust at a slow spreading ridge: Constraints from 206 Pb/ 238 U zircon ages from Atlantis Massif and IODP Hole U1309D (30°N, MAR). Geochemistry Geophysics Geosystems. 2008; 9(8),doi:10.1029/2008GC002063
  17. Haase KM, Renno AD. Variation of magma generation and mantle sources during continental rifting observed in Cenozoic lavas from the Eger Rift, Central Europe. Chemical Geology. 2008; 257(3-4):192-202, doi:10.1016/j.chemgeo.2008.09.003
  18. Herzberg C, Asimow PD. Petrology of some oceanic island basalts: PRIMELT2.XLS software for primary magma calculation. Geochemistry Geophysics Geosystems. 2008; 9(9), doi:10.1029/2008GC002057
  19. Hirschmann MM, Ghiorso MS, Davis FA, Gordon SM, Mukherjee S, Grove TL, et al. Library of Experimental Phase Relations (LEPR): A database and Web portal for experimental magmatic phase equilibria data. Geochemistry Geophysics Geosystems. 2008; 9(3), doi:10.1029/2007GC001894
  20. Iwamori H, Albarède F. Decoupled isotopic record of ridge and subduction zone processes in oceanic basalts by independent component analysis. Geochemistry Geophysics Geosystems. 2008; 9(4),doi:10.1029/2007GC001753
  21. Jochum KP, Nohl U. Reference materials in geochemistry and environmental research and the GeoReM database. Chemical Geology. 2008; 253(1-2):50-3, doi:10.1016/j.chemgeo.2008.04.002
  22. Keller NS, Arculus RJ, Hermann J, Richards S. Submarine back-arc lava with arc signature: Fonualei Spreading Center, northeast Lau Basin, Tonga. Journal of Geophysical Research. 2008; 113(B8), doi:10.1029/2007JB005451
  23. Konter JG, Hanan BB, Blichert-Toft J, Koppers AA, Plank T, Staudigel H. One hundred million years of mantle geochemical history suggest the retiring of mantle plumes is premature. Earth and Planetary Science Letters. 2008; 275(3-4):285-95, doi:10.1016/j.epsl.2008.08.023
  24. Kvassnes AJ, Grove TL. How partial melts of mafic lower crust affect ascending magmas at oceanic ridges. Contributions to Mineralogy and Petrology. 2008; 156(1):49-71, doi:10.1007/s00410-007-0273-x
  25. Lee C-, Morton DM, Little MG, Kistler R, Horodyskyj UN, Leeman WP, et al. Regulating continent growth and composition by chemical weathering. Proceedings of the National Academy of Sciences. 2008; 105(13):4981-6, doi:10.1073/pnas.0711143105
  26. Lissenberg JC, Dick HJ. Melt–rock reaction in the lower oceanic crust and its implications for the genesis of mid-ocean ridge basalt. Earth and Planetary Science Letters. 2008; 271(1-4):311-25, doi:10.1016/j.epsl.2008.04.023
  27. Liu Y, Gao S, Kelemen PB, Xu W. Recycled crust controls contrasting source compositions of Mesozoic and Cenozoic basalts in the North China Craton. Geochimica et Cosmochimica Acta. 2008; 72(9):2349-76, doi:10.1016/j.gca.2008.02.018
  28. Liu Y, Zong K, Kelemen P, Gao S. Geochemistry and magmatic history of eclogites and ultramafic rocks from the Chinese continental scientific drill hole: Subduction and ultrahigh-pressure metamorphism of lower crustal cumulates. Chemical Geology. 2008; 247(1-2):133-53, doi:10.1016/j.chemgeo.2007.10.016
  29. Malaviarachchi SP, Makishima A, Tanimoto M, Kuritani T, Nakamura E. Highly unradiogenic lead isotope ratios from the Horoman peridotite in Japan. Nature Geoscience. 2008; 1(12):859-63, doi:10.1038/ngeo363
  30. Maria AH, Luhr JF. Lamprophyres, Basanites, and Basalts of the Western Mexican Volcanic Belt: Volatile Contents and a Vein-Wallrock Melting Relationship. Journal of Petrology. 2008; 49(12):2123-56, doi:10.1093/petrology/egn060
  31. Metcalf RV, Shervais JW. Special Paper 438: Ophiolites, Arcs, and Batholiths: A Tribute to Cliff Hopson Suprasubduction-zone ophiolites: Is there really an ophiolite conundrum?. Vol 438. Geological Society of America;  2008, doi:10.1130/2008.2438(07)
  32. Miller MS, Lee C-. Possible chemical modification of oceanic lithosphere by hotspot magmatism: Seismic evidence from the junction of Ninetyeast Ridge and the Sumatra–Andaman arc. Earth and Planetary Science Letters. 2008; 265(3-4):386-95, doi:10.1016/j.epsl.2007.10.039
  33. Nair R, Chacko T. Role of oceanic plateaus in the initiation of subduction and origin of continental crust. Geology. 2008; 36(7):583, doi:10.1130/G24773A.1
  34. Omrani J, Agard P, Whitechurch H, Benoit M, Prouteau G, Jolivet L. Arc-magmatism and subduction history beneath the Zagros Mountains, Iran: A new report of adakites and geodynamic consequences. Lithos. 2008; 106(3-4):380-98, doi:10.1016/j.lithos.2008.09.008
  35. O'Neill SC, Palme H. Collisional erosion and the non-chondritic composition of the terrestrial planets. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences. 2008; 366(1883):4205-38, doi:10.1098/rsta.2008.0111
  36. Peate DW, Barker AK, Riishuus MS, Andreasen R. Temporal variations in crustal assimilation of magma suites in the East Greenland flood basalt province: Tracking the evolution of magmatic plumbing systems. Lithos. 2008; 102(1-2):179-97, doi:10.1016/j.lithos.2007.08.009
  37. Pilet S, Baker MB, Stolper EM. Metasomatized Lithosphere and the Origin of Alkaline Lavas. Science. 2008; 320(5878):916-9, doi: 10.1126/science.1156563
  38. Putirka K. Excess temperatures at ocean islands: Implications for mantle layering and convection. Geology. 2008; 36(4):283, doi:10.1130/G24615A.1
  39. Python M, Ceuleneer G, Arai S. Chromian spinels in mafic–ultramafic mantle dykes: Evidence for a two-stage melt production during the evolution of the Oman ophiolite. Lithos. 2008; 106(1-2):137-54, doi:10.1016/j.lithos.2008.07.001
  40. Qin L, Humayun M. The Fe/Mn ratio in MORB and OIB determined by ICP-MS. Geochimica et Cosmochimica Acta. 2008; 72(6):1660-77, doi:10.1016/j.gca.2008.01.012
  41. Sauter D, Cannat M, Mendel V. Magnetization of 0–26.5 Ma seafloor at the ultraslow spreading Southwest Indian Ridge, 61°–67°E. Geochemistry Geophysics Geosystems. 2008; 9(4), doi:10.1029/2007GC001764
  42. Secord R, Wing SL, Chew A. Stable isotopes in early Eocene mammals as indicators of forest canopy structure and resource partitioning. Paleobiology. 2008; 34(2):282-300, doi:10.1666/0094-8373(2008)034[0282:SIIEEM]2.0.CO;2
  43. Tomascak PB, Langmuir CH, le Roux PJ, Shirey SB. Lithium isotopes in global mid-ocean ridge basalts. Geochimica et Cosmochimica Acta. 200872(6):1626-37, doi:10.1016/j.gca.2007.12.021
  44. Toomey DR, Hooft EE. Mantle upwelling, magmatic differentiation, and the meaning of axial depth at fast-spreading ridges. Geology. 2008; 36(9):679, doi:10.1130/G24834A.1
  45. Zhang BH, Liu Y, Gao S. Petrogenetic significance of high Fe/Mn ratios of the Cenozoic basalts from eastern China. Science in China Series D: Earth Sciences. 2008; 51(2):229-39, doi:10.1130/G24834A
  46. Zhang N, Blodgett RB, Hofstra AH. Great Basin Paleontological Database. Geosphere. 2008; 4(3):520, doi:10.1130/GES00162.1


  1. Benjamin ER, Plank T, Wade JA, Kelley KA, Hauri EH, Alvarado GE. High water contents in basaltic magmas from Irazú Volcano, Costa Rica. Journal of Volcanology and Geothermal Research. 2007; 168(1-4):68-92, doi:10.1016/j.jvolgeores.2007.08.008
  2. Bizimis M, Griselin M, Lassiter JC, Salters VJ, Sen G. Ancient recycled mantle lithosphere in the Hawaiian plume: Osmium–Hafnium isotopic evidence from peridotite mantle xenoliths. Earth and Planetary Science Letters. 2007; 257(1-2):259-73, doi:10.1016/j.epsl.2007.02.036
  3. Blatter DL, Lang Farmer G, Carmichael IS. A North-South Transect across the Central Mexican Volcanic Belt at  100 W: Spatial Distribution, Petrological, Geochemical, and Isotopic Characteristics of Quaternary Volcanism. Journal of Petrology. 2007; 48(5):901-50, doi:/10.1093/petrology/egm006
  4. Bodinier J-, Godard M. Treatise on Geochemistry Orogenic, Ophiolitic, and Abyssal Peridotites. Elsevier;  2007, doi:10.1016/b978-0-08-095975-7.00204-7
  5. Cadoux A, Blichert-Toft J, Pinti DL, Albarède F. A unique lower mantle source for Southern Italy volcanics. Earth and Planetary Science Letters. 2007; 259(3-4):227-38, doi:10.1016/j.epsl.2007.04.001
  6. Castelli D, Lombardo B. The Plagiogranite - FeTi-Oxide Gabbro Association of Verne (Monviso Metamorphic Ophiolite, Western Alps).2007; Ofioliti, 32(1).
  7. Coogan LA. The Lower Oceanic Crust. In: Treatise on Geochemistry.;  2007. p. 1-45.
  8. Courtier AM, Jackson MG, Lawrence JF, Wang Z, Lee C-, Halama R, et al. Correlation of seismic and petrologic thermometers suggests deep thermal anomalies beneath hotspots. Earth and Planetary Science Letters. 2007; 264(1-2):308-16,10.1016/j.epsl.2007.10.003
  9. Falloon TJ, Green DH, Danyushevsky LV. Crystallization temperatures of tholeiite parental liquids: Implications for the existence of thermally driven mantle plumes. Vol 430. Geological Society of America;  2007, doi: 10.1130/2007.2430(12)
  10. Falloon TJ, Green DH, Danyushevsky LV, McNeill AW. The Composition of Near-solidus Partial Melts of Fertile Peridotite at 1 and 1.5 GPa: Implications for the Petrogenesis of MORB. Journal of Petrology. 2007; 49(4):591-613, doi:10.1016/j.epsl.2007.10.003
  11. van de Flierdt T, Goldstein SL, Hemming SR, Roy M, Frank M, Halliday AN. Global neodymium–hafnium isotope systematics — revisited. Earth and Planetary Science Letters. 2007; 259(3-4):432-41, doi:10.1016/j.epsl.2007.05.003
  12. Grimes CB, John BE, Kelemen PB, Mazdab FK, Wooden JL, Cheadle MJ, et al. Trace element chemistry of zircons from oceanic crust: A method for distinguishing detrital zircon provenance. Geology. 2007; 35(7):643, doi:10.1130/G23603A.1
  13. Harangi S, Downes H, Thirlwall M, Gmeling K. Geochemistry, Petrogenesis and Geodynamic Relationships of Miocene Calc-alkaline Volcanic Rocks in the Western Carpathian Arc, Eastern Central Europe. Journal of Petrology. 2007; 48(12):2261-87, doi:10.1093/petrology/egm059
  14. Herzberg C, Asimow PD, Arndt N, Niu Y, Lesher CM, Fitton JG, et al. Temperatures in ambient mantle and plumes: Constraints from basalts, picrites, and komatiites. Geochemistry Geophysics Geosystems. 2007; 8(2), doi:10.1029/2006GC001390
  15. Hofmann AW. Sampling Mantle Heterogeneity through Oceanic Basalts: Isotopes and Trace Elements. Elsevier;  2007, doi:10.1016/B0-08-043751-6/02123-X
  16. Hollocher K, Robinson P, Terry MP, Walsh E. Application of major- and trace-element geochemistry to refine U-Pb zircon, and Sm/Nd or Lu/Hf sampling targets for geochronology of HP and UHP eclogites, Western Gneiss Region, Norway. American Mineralogist. 2007; 92(11-12):1919-24, doi:10.2138/am.2007.2405
  17. Hollocher K, Robinson P, Walsh E, Terry MP. The Neoproterozoic Ottfjallet dike swarm of the Middle Allochthon, traced geochemically into the Scandian Hinterland, Western Gneiss Region, Norway. American Journal of Science. 2007; 307(6):901-53, doi:10.2475/06.2007.02
  18. Ito G, van Keken PE. Hot spots and melting anomalies. In: Mantle Dynamics. Vol 7.;  2007. p. 371-435. (Treatise in Geophysics;  vol 7), doi:10.2475/06.2007.02
  19. Jackson M, Kurz M, Hart S, Workman R. New Samoan lavas from Ofu Island reveal a hemispherically heterogeneous high 3He/4He mantle. Earth and Planetary Science Letters. 2007; 264(3-4):360-74, doi:10.1016/j.epsl.2007.09.023
  20. Jacobs AM, Harding AJ, Kent GM. Axial crustal structure of the Lau back-arc basin from velocity modeling of multichannel seismic data. Earth and Planetary Science Letters. 2007; 259(3-4):239-55, doi:10.1016/j.epsl.2007.04.021
  21. van Keken PE, Ballentine CJ, Hauri EH. Convective Mixing in the Earth's Mantle. Elsevier;  2007, p. 509-525
  22. Kelemen PB, Hanghøj K, Greene AR. One View of the Geochemistry of Subduction-Related Magmatic Arcs, with an Emphasis on Primitive Andesite and Lower Crust. Elsevier;  2007, doi:10.1016/B0-08-043751-6/03035-8
  23. Kellogg JB, Jacobsen SB, O'Connell RJ. Modeling lead isotopic heterogeneity in mid-ocean ridge basalts. Earth and Planetary Science Letters. 2007; 262(3-4):328-42, doi:10.1016/j.epsl.2007.06.018
  24. Kingsley RH, Blichert-Toft J, Fontignie D, Schilling J-. Hafnium, neodymium, and strontium isotope and parent-daughter element systematics in basalts from the plume-ridge interaction system of the Salas y Gomez Seamount Chain and Easter Microplate. Geochemistry Geophysics Geosystems. 2007; 8(4), doi:10.1029/2006GC001401
  25. Koepke J, Berndt J, Feig ST, Holtz F. The formation of SiO2-rich melts within the deep oceanic crust by hydrous partial melting of gabbros. Contributions to Mineralogy and Petrology. 2007; 153(1):67-84, doi:10.1007/s00410-006-0135-y
  26. Kuzmichev AB, Pease VL. Siberian trap magmatism on the New Siberian Islands: constraints for Arctic Mesozoic plate tectonic reconstructions. Journal of the Geological Society. 2007; 164(5):959-68, doi:10.1144/0016-76492006-090
  27. Lucassen F, Franz G, Romer RL, Schultz F, Dulski P, Wemmer K. Pre-Cenozoic intra-plate magmatism along the Central Andes (17–34°S): Composition of the mantle at an active margin. Lithos. 2007; 99(3-4):312-38, doi:10.1016/j.lithos.2007.06.007
  28. Lustrino M, Wilson M. The circum-Mediterranean anorogenic Cenozoic igneous province. Earth-Science Reviews. 2007; 81(1-2):1-65, doi:10.1016/j.earscirev.2006.09.002
  29. Mallamn G, ONeill H. The effect of oxygen fugacity on the partitioning of Re between crystals and silicate melt during mantle melting. Geochimica et Cosmochimica Acta. 2007; 71(11):2837-57, doi:10.1016/j.gca.2007.03.028
  30. Meyzen CM, Blichert-Toft J, Ludden JN, Humler E, Mével C, Albarède F. Isotopic portrayal of the Earth’s upper mantle flow field. Nature. 2007; 447(7148):1069-74, doi:10.1038/nature05920
  31. Mori L, Gómez-Tuena A, Cai Y, Goldstein SL. Effects of prolonged flat subduction on the Miocene magmatic record of the central Trans-Mexican Volcanic Belt. Chemical Geology. 2007; 244(3-4):452-73, doi:10.1016/j.chemgeo.2007.07.002
  32. Murray CG. Devonian supra-subduction zone setting for the Princhester and Northumberland Serpentinites: implications for the tectonic evolution of the northern New England Orogen. Australian Journal of Earth Sciences. 2007; 54(7):899-925, doi:10.1080/08120090701392747
  33. Nakamura K, Kato Y. A new geochemical approach for constraining a marine redox condition of Early Archean. Earth and Planetary Science Letters. 2007; 261(1-2):296-302, doi:10.1016/j.epsl.2007.07.020
  34. Natland JH. Delta Nb and the role of magma mixing at the East Pacific Rise and Iceland. Vol 430. Geological Society of America;  2007, doi:10.1130/2007.2430(21)
  35. Nishio Y, Nakai S, Ishii T, Sano Y. Isotope systematics of Li, Sr, Nd, and volatiles in Indian Ocean MORBs of the Rodrigues Triple Junction: Constraints on the origin of the DUPAL anomaly. Geochimica et Cosmochimica Acta. 2007; 71(3):745-59, doi:10.1016/j.gca.2006.10.004
  36. Niu Y, O'Hara MJ. Global Correlations of Ocean Ridge Basalt Chemistry with Axial Depth: a New Perspective. Journal of Petrology. 2007; 49(4):633-64, doi:10.1093/petrology/egm051
  37. Putirka KD, Perfit M, Ryerson FJ, Jackson MG. Ambient and excess mantle temperatures, olivine thermometry, and active vs. passive upwelling. Chemical Geology. 2007; 241(3-4):177-206, doi:10.1016/j.chemgeo.2007.01.014
  38. Python M, Ceuleneer G, Ishida Y, Barrat J-, Arai S. Oman diopsidites: a new lithology diagnostic of very high temperature hydrothermal circulation in mantle peridotite below oceanic spreading centres. Earth and Planetary Science Letters. 2007; 255(3-4):289-305, doi:10.1016/j.epsl.2006.12.030
  39. Ray D, Iyer SD, Banerjee R, S. M, Widdowson M. A Petrogenetic Model of Basalts from the Northern Central Ridge: 3-11degS. Acta Geologica Sinica. 2007; 81.
  40. Rubin KH, Sinton JM. Inferences on mid-ocean ridge thermal and magmatic structure from MORB compositions. Earth and Planetary Science Letters. 2007; 260(1-2):257-76, doi:10.1016/j.epsl.2007.05.035
  41. Sharp ZD, Barnes JD, Brearley AJ, Chaussidon M, Fischer TP, Kamenetsky VS. Chlorine isotope homogeneity of the mantle, crust and carbonaceous chondrites. Nature. 2007; 446(7139):1062-5, doi:10.1038/nature05748
  42. Villiger S, Müntener O, Ulmer P. Crystallization pressures of mid-ocean ridge basalts derived from major element variations of glasses from equilibrium and fractional crystallization experiments. Journal of Geophysical Research. 2007; 112(B1), doi:10.1029/2006JB004342
  43. Yamamoto M, Morgan JP, Morgan JW. Global plume-fed asthenosphere flow—II: Application to the geochemical segmentation of mid-ocean ridges. Vol 430. Geological Society of America;  2007, doi:10.1130/2007.2430(10)
  44. Zhou J, Li X-, Ge W, Li Z-. Age and origin of middle Neoproterozoic mafic magmatism in southern Yangtze Block and relevance to the break-up of Rodinia. Gondwana Research. 2007; 12(1-2):184-97, doi:10.1016/
  45. Zhu B. Pb-Sr-Nd Isotopic Systematics of Mantle-derived Rocks in the World. Earth Science Frontiers. 2007; 14(2):24-36, doi:10.1016/S1872-5791(07)60012-8


  1. Burke K, Khan S. Geoinformatic approach to global nepheline syenite and carbonatite distribution: Testing a Wilson cycle model. Geosphere. 2006; 2(1):53, doi:10.1130/GES00027.1
  2. De Astis G, Kempton PD, Peccerillo A, Wu TW. Trace element and isotopic variations from Mt. Vulture to Campanian volcanoes: constraints for slab detachment and mantle inflow beneath southern Italy. Contributions to Mineralogy and Petrology. 2006; 151(3):331-51, doi:10.1007/s00410-006-0062-y
  3. Debaille V, Blichert-Toft J, Agranier A, Doucelance R, Schiano P, Albarede F. Geochemical component relationships in MORB from the Mid-Atlantic Ridge, 22–35°N. Earth and Planetary Science Letters. 2006; 241(3-4):844-62, doi:10.1016/j.epsl.2005.11.004
  4. Dmitriev LV, Sokolov YS, Plechova AA. Statistical assessment of variations in the compositional and P-T parameters of the evolution of mid-oceanic ridge basalts and their regional distribution. Petrology. 2006; 14(3):209-29, doi:10.1134/S0869591106030015
  5. Eason D, Sinton J. Origin of high-Al N-MORB by fractional crystallization in the upper mantle beneath the Galápagos Spreading Center. Earth and Planetary Science Letters. 2006; 252(3-4):423-36, doi:10.1016/j.epsl.2006.09.048
  6. Evans KA. Redox decoupling and redox budgets: Conceptual tools for the study of earth systems. Geology. 2006; 34(6):489, doi:10.1130/G22390.1
  7. Falloon TJ, Berry RF, Robinson P, Stolz AJ. Whole-rock geochemistry of the Hili Manu peridotite, East Timor: implications for the origin of Timor ophiolites. Australian Journal of Earth Sciences. 2006; 53(4):637-49, doi:10.1080/08120090600686793
  8. Godard M, Bosch D, Einaudi F. A MORB source for low-Ti magmatism in the Semail ophiolite. Chemical Geology. 2006; 234(1-2):58-78, doi:10.1016/j.chemgeo.2006.04.005
  9. Gomez-Tuena A, Langmuir CH, Goldstein SL, Straub SM, Ortega-Gutierrez F. Geochemical Evidence for Slab Melting in the Trans-Mexican Volcanic Belt. Journal of Petrology. 2006; 48(3):537-62, doi:/10.1093/petrology/egl071
  10. Green NL. Influence of slab thermal structure on basalt source regions and melting conditions: REE and HFSE constraints from the Garibaldi volcanic belt, northern Cascadia subduction system. Lithos. 2006; 87(1-2):23-49, doi:10.1016/j.lithos.2005.05.003
  11. Hart S, Blusztajn J. Age and geochemistry of the mafic sills, ODP site 1276, Newfoundland margin. Chemical Geology. 2006; 235(3-4):222-37, doi:10.1016/j.chemgeo.2006.07.001
  12. Hauri E, Gaetani G, Green T. Partitioning of water during melting of the Earth's upper mantle at H2O-undersaturated conditions. Earth and Planetary Science Letters. 2006; 248(3-4):715-34, doi:10.1016/j.epsl.2006.06.014
  13. Hirano N, Takahashi E, Yamamoto J, Abe N, Ingle S, Kaneoka I, et al. Volcanism in Response to Plate Flexure. Science. 2006; 313(5792):1426-8, doi:10.1126/science.1128235
  14. Ito G, Mahoney JJ. Melting a high 3He/4He source in a heterogeneous mantle. Geochemistry Geophysics Geosystems. 2006; 7(5), doi:10.1029/2005GC001158
  15. Jackson M, Hart S. Strontium isotopes in melt inclusions from Samoan basalts: Implications for heterogeneity in the Samoan plume. Earth and Planetary Science Letters. 2006; 245(1-2):260-77, doi:10.1016/j.epsl.2006.02.040
  16. Janousek V, Farrow CM, Erban V. Interpretation of Whole-rock Geochemical Data in Igneous Geochemistry: Introducing Geochemical Data Toolkit (GCDkit). Journal of Petrology. 2006; 47(6):1255-9, doi:10.1093/petrology/egl013
  17. van Keken PE, Ballentine CJ, Hauri EH. Convective Mixing in the Earth's Mantle. In: Carlson RW, editor. The Mantle and Core: Treatise on Geochemistry. Vol 2. 2nd ed. Elsevier;  2006. p. 471-91.
  18. Kelley KA, Plank T, Grove TL, Stolper EM, Newman S, Hauri E. Mantle melting as a function of water content beneath back-arc basins. Journal of Geophysical Research. 2006; 111(B9), doi:10.1029/2005JB003732
  19. Khan SD, Flower MF, Sultan MI, Sandvol E. Introduction to TETHYS—an interdisciplinary GIS database for studying continental collisions. Journal of Asian Earth Sciences. 2006; 26(6):613-25, doi:10.1016/j.jseaes.2004.12.001
  20. Kimura J-, Sisson TW, Nakano N, Coombs ML, Lipman PW. Isotope geochemistry of early Kilauea magmas from the submarine Hilina bench: The nature of the Hilina mantle component. Journal of Volcanology and Geothermal Research. 2006; 151(1-3):51-72, doi:10.1016/j.jvolgeores.2005.07.024
  21. Lee C-, Cheng X, Horodyskyj U. The development and refinement of continental arcs by primary basaltic magmatism, garnet pyroxenite accumulation, basaltic recharge and delamination: insights from the Sierra Nevada, California. Contributions to Mineralogy and Petrology. 2006; 151(2):222-42, doi:10.1007/s00410-005-0056-1
  22. Leroux P, Shirey S, Hauri E, Perfit M, Bender J. The effects of variable sources, processes and contaminants on the composition of northern EPR MORB (8–10°N and 12–14°N): Evidence from volatiles (H2O, CO2, S) and halogens (F, Cl). Earth and Planetary Science Letters. 2006; 251(3-4):209-31, doi:10.1016/j.epsl.2006.09.012
  23. Lucassen F, Kramer W, Bartsch V, Wilke H-, Franz G, Romer RL, et al. Nd, Pb, and Sr isotope composition of juvenile magmatism in the Mesozoic large magmatic province of northern Chile (18–27°S): indications for a uniform subarc mantle. Contributions to Mineralogy and Petrology. 2006; 152(5):571-89, doi:10.1007/s00410-006-0119-y
  24. Merle R, Scharer U, Girardeau J, Cornen G. Cretaceous seamounts along the continent–ocean transition of the Iberian margin: U–Pb ages and Pb–Sr–Hf isotopes. Geochimica et Cosmochimica Acta. 2006; 70(19):4950-76, doi:10.1016/j.gca.2006.07.004
  25. Moore CJ, Habermann RE. Core data stewardship: a long-term perspective. Geological Society, London, Special Publications. 2006; 267(1):241-51, doi:10.1144/GSL.SP.2006.267.01.18
  26. Nauret F, Abouchami W, Galer S, Hofmann A, Hemond C, Chauvel C, et al. Correlated trace element-Pb isotope enrichments in Indian MORB along 18–20°S, Central Indian Ridge. Earth and Planetary Science Letters. 2006; 245(1-2):137-52, doi:10.1016/j.epsl.2006.03.015
  27. Panter KS, Blusztajn J, Hart SR, Kyle PR, Esser R, McIntosh WC. The Origin of HIMU in the SW Pacific: Evidence from Intraplate Volcanism in Southern New Zealand and Subantarctic Islands. Journal of Petrology. 2006; 47(9):1673-704, doi:10.1093/petrology/egl024
  28. Rannou E, Caroff M, Cordier C. A geochemical approach to model periodically replenished magma chambers: Does oscillatory supply account for the magmatic evolution of EPR 17–19°S? Geochimica et Cosmochimica Acta. 2006; 70(18):4783-96, doi:10.1016/j.gca.2006.07.007
  29. Achramm B, Jochum K, Sarbas B, Nohl U. GEOROC and GeoReM—Linking the information of two Geological databases. Geochimica et Cosmochimica Acta. 2006; 70(18):A565, doi:10.1016/j.gca.2006.06.1045
  30. Shragge J, Snow CA. Bayesian Geochemical Discrimination of Mafic Volcanic Rocks. American Journal of Science. 2006; 306(3):191-209, doi:10.2475/ajs.306.3.191
  31. Snow CA. A reevaluation of tectonic discrimination diagrams and a new probabilistic approach using large geochemical databases: Moving beyond binary and ternary plots. Journal of Geophysical Research. 2006; 111(B6), doi:10.1029/2005JB003799
  32. Spadea P, D'Antonio M. Initiation and evolution of intra-oceanic subduction in the Uralides: Geochemical and isotopic constraints from Devonian oceanic rocks of the Southern Urals, Russia. The Island Arc. 2006; 15(1):7-25, doi:10.1111/j.1440-1738.2006.00514.x
  33. Vermeesch P. Tectonic discrimination diagrams revisited. Geochemistry Geophysics Geosystems. 2006; 7(6), doi:10.1029/2005GC001092
  34. Vermeesch P. Tectonic discrimination of basalts with classification trees. Geochimica et Cosmochimica Acta. 2006; 70(7):1839-48, doi:10.1016/j.gca.2005.12.016
  35. Vlastélic I, Lewin E, Staudacher T. Th/U and other geochemical evidence for the Réunion plume sampling a less differentiated mantle domain. Earth and Planetary Science Letters. 2006; 248(1-2):379-93, doi:10.1016/j.epsl.2006.06.003
  36. Walker DJ, Bowers TD, Black RA, Glazer AF, Farmer GL, Carlson RW. A geochemical database for western North American volcanic and intrusive rocks (NAVDAT). Geological Society of America, Special Paper. 2006; 397:61-71, doi:10.1130/2006.2397(05)
  37. Wen L. A compositional anomaly at the Earth's core–mantle boundary as an anchor to the relatively slowly moving surface hotspots and as source to the DUPAL anomaly. Earth and Planetary Science Letters. 2006; 246(1-2):138-48, doi:10.1016/j.epsl.2006.04.024
  38. Wilson A, Chunnett G. Trace Element and Platinum Group Element Distributions and the Genesis of the Merensky Reef, Western Bushveld Complex, South Africa. Journal of Petrology. 2006; 47(12):2369-403, doi:/10.1093/petrology/egl048
  39. Workman RK, Hauri E, Hart SR, Wang J, Blusztajn J. Volatile and trace elements in basaltic glasses from Samoa: Implications for water distribution in the mantle. Earth and Planetary Science Letters. 2006; 241(3-4):932-51, doi:10.1016/j.epsl.2005.10.028


  1. Agranier A, Blichert Toft J, Graham D, Debaille V, Schiano P, Albarede F. The spectra of isotopic heterogeneities along the mid-Atlantic Ridge. Earth and Planetary Science Letters. 2005; 238(1-2):96-109, doi:10.1016/j.epsl.2005.07.011
  2. Albarède F. Geophysical Monograph Series Earth's Deep Mantle: Structure, Composition, and Evolution: The survival of mantle geochemical heterogeneities. In: van der Hilst RD, Bass JD, Matas J, Trampert J, editors. Vol 160. Washington, D. C.: American Geophysical Union;  2005. p. 27-46, doi:10.1029/160GM04
  3. Ballentine CJ, Marty B, Sherwood Lollar B, Cassidy M. Neon isotopes constrain convection and volatile origin in the Earth's mantle. Nature. 2005; 433(7021):33-8, doi:10.1038/nature03182
  4. Becker M, le Roex AP. Geochemistry of South African On- and Off-craton, Group I and Group II Kimberlites: Petrogenesis and Source Region Evolution. Journal of Petrology. 2005; 47(4):673-703, doi:10.1093/petrology/egi089
  5. Bizimis M, Sen G, Salters V, Keshav S. Hf-Nd-Sr isotope systematics of garnet pyroxenites from Salt Lake Crater, Oahu, Hawaii: Evidence for a depleted component in Hawaiian volcanism. Geochimica et Cosmochimica Acta. 2005; 69(10):2629-46, doi:10.1016/j.gca.2005.01.005
  6. Cann JR, Smith DK. Evolution of volcanism and faulting in a segment of the Mid-Atlantic Ridge at 25°N. Geochemistry Geophysics Geosystems. 2005; 6(9), doi:10.1029/2005GC000954
  7. Chadwick J, Perfit M, Ridley I, Jonasson, Kamenov G, Chadwick W, et al. Magmatic effects of the Cobb hot spot on the Juan de Fuca Ridge. Journal of Geophysical Research. 2005; 110(B3), doi:10.1029/2003JB002767
  8. Chazot G, Charpentier S, Kornprobst, Vannucci R, Beatrice L. Lithospheric Mantle Evolution during Continental Break-Up: The West Iberia Non-Volcanic Passive Margin. Journal of Petrology. 2005; 46(12):2527-68, doi:10.1093/petrology/egi064
  9. Class C, Goldstein SL. Evolution of helium isotopes in the Earth's mantle. Nature. 2005; 436(7054):1107-12, doi:10.1038/nature03930
  10. Conceição RV, Mallmann G, Koester E, Schilling M, Bertotto GW, Rodriguez-Vargas A. Andean subduction-related mantle xenoliths: Isotopic evidence of Sr–Nd decoupling during metasomatism. Lithos. 2005; 82(3-4):273-87, doi:10.1016/j.lithos.2004.09.022
  11. Dasgupta R, Hirschmann MM, Dellas N. The effect of bulk composition on the solidus of carbonated eclogite from partial melting experiments at 3 GPa. Contributions to Mineralogy and Petrology. 2005; 149(3):288-305, doi:10.1007/s00410-004-0649-0
  12. Eiler JM. Oxygen isotope constraints on the sources of Central American arc lavas. Geochemistry Geophysics Geosystems. 2005; 6(7), doi:10.1029/2004GC000804
  13. Escrig S, Schiano P, Schilling J-, Allègre C. Rhenium–osmium isotope systematics in MORB from the Southern Mid-Atlantic Ridge (40°–50° S). Earth and Planetary Science Letters. 2005; 235(3-4):528-48, doi:10.1016/j.epsl.2005.04.035
  14. Foulger GR, Natland JH, Anderson DL. Genesis of the Iceland melt anomaly by plate tectonic processes. Vol 388. Geological Society of America;  2005, doi:/10.1130/0-8137-2388-4.595
  15. Foulger GR, Natland JH, Anderson DL. A source for Icelandic magmas in remelted Iapetus crust. Journal of Volcanology and Geothermal Research. 2005; 141(1-2):23-44, doi:10.1016/j.jvolgeores.2004.10.006
  16. Geist DJ. Wolf Volcano, Galapagos Archipelago: Melting and Magmatic Evolution at the Margins of a Mantle Plume. Journal of Petrology. 2005; 46(11):2197-224, doi:10.1093/petrology/egi052
  17. Gillis KM, Coogan LA, Pedersen R. Strontium isotope constraints on fluid flow in the upper oceanic crust at the East Pacific Rise. Earth and Planetary Science Letters. 2005; 232(1-2):83-94, doi:10.1016/j.epsl.2005.01.008
  18. Green DH, Falloon TJ. Primary magmas at mid-ocean ridges, "hotspots", and other intraplate settings;  constraints on mantle potential temperature. Geological Society of America, Special paper. 2005; 388:217-47, doi:10.1130/0-8137-2388-4.217
  19. Green NL, Sinha KA. Consequences of varied slab age and thermal structure on enrichment processes in the sub-arc mantle of the northern Cascadia subduction system. Journal of Volcanology and Geothermal Research. 2005; 140(1-3):107-32, doi:10.1016/j.jvolgeores.2004.07.017
  20. Huang S. Petrogenesis of lavas from Detroit Seamount: Geochemical differences between Emperor Chain and Hawaiian volcanoes. Geochemistry Geophysics Geosystems. 2005; 6(1), doi:10.1029/2004GC000756
  21. Ito G, Mahoney JJ. Flow and melting of a heterogeneous mantle. Earth and Planetary Science Letters. 2005; 230(1-2):47-63, doi:10.1016/j.epsl.2004.10.035
  22. Janney PE. Hafnium Isotope and Trace Element Constraints on the Nature of Mantle Heterogeneity beneath the Central Southwest Indian Ridge (13 E to 47 E). Journal of Petrology. 2005; 46(12):2427-64, doi:10.1093/petrology/egi060
  23. Kokfelt T, Lundstrom C, Hoernle K, Hauff F, Werner R. Plume–ridge interaction studied at the Galápagos spreading center: Evidence from 226Ra–230Th–238U and 231Pa–235U isotopic disequilibria. Earth and Planetary Science Letters. 2005; 234(1-2):165-87, doi:10.1016/j.epsl.2005.02.031Get
  24. Lee C-, Lenardic A, Cooper CM, Niu F, Levander A. The role of chemical boundary layers in regulating the thickness of continental and oceanic thermal boundary layers. Earth and Planetary Science Letters. 2005; 230(3-4):379-95, doi:10.1016/j.epsl.2004.11.019
  25. Lee C-. Similar V/Sc Systematics in MORB and Arc Basalts: Implications for the Oxygen Fugacities of their Mantle Source Regions. Journal of Petrology. 2005; 46(11):2313-36, doi:10.1093/petrology/egi056
  26. Ligi M, Bonatti E, Cipriani A, Ottolini L. Water-rich basalts at mid-ocean-ridge cold spots. Nature. 2005; 434(7029):66-9, doi:10.1038/nature03264
  27. Lindsay JM, Trumbull RB, Siebel W. Geochemistry and petrogenesis of late Pleistocene to Recent volcanism in Southern Dominica, Lesser Antilles. Journal of Volcanology and Geothermal Research. 2005; 148(3-4):253-94, doi:10.1016/j.jvolgeores.2005.04.018
  28. Nonnotte P, Ceuleneer G, Benoit M. Genesis of andesitic–boninitic magmas at mid-ocean ridges by melting of hydrated peridotites: Geochemical evidence from DSDP Site 334 gabbronorites. Earth and Planetary Science Letters. 2005; 236(3-4):632-53, doi:10.1016/j.epsl.2005.05.026
  29. Plank T. Constraints from Thorium/Lanthanum on Sediment Recycling at Subduction Zones and the Evolution of the Continents. Journal of Petrology. 2005; 46(5):921-44, doi:10.1093/petrology/egi005
  30. Pollock MA, Klein EM, Karson JA, Tivey MA. Temporal and spatial variability in the composition of lavas exposed along the Western Blanco Transform Fault. Geochemistry Geophysics Geosystems. 2005; 6(11), doi:10.1029/2005GC001026
  31. Portnyagin MV, Savel'ev DP, Hoernle K. Plume-related association of cretaceous oceanic basalts of eastern Kamchatka: compositions of spinel and parental magmas. Petrology, 2005; 13
  32. Portnyagin M, Hoernle K, Avdeiko G, Hauff F, Werner R, Bindeman I, et al. Transition from arc to oceanic magmatism at the Kamchatka-Aleutian junction. Geology. 2005; 33(1):25, doi:10.1130/G20853.1
  33. Saha A, Basu AR, Wakabayashi J, Wortman GL. Geochemical evidence for a subducted infant arc in Franciscan high-grade-metamorphic tectonic blocks. Geological Society of America Bulletin. 2005; 117(9):1318, doi:10.1130/B25593.1
  34. Sobolev AV, Hofmann AW, Sobolev SV, Nikogosian IK. An olivine-free mantle source of Hawaiian shield basalts. Nature. 2005; 434(7033):590-7, doi:10.1038/nature03411
  35. Stracke A, Hofmann AW, Hart SR. FOZO, HIMU, and the rest of the mantle zoo. Geochemistry Geophysics Geosystems. 2005; 6(5), doi:10.1029/2004GC000824
  36. Tommasini S, Manetti P, Innocenti F, Abebe T, Sintoni M, Conticelli S. The Ethiopian subcontinental mantle domains: geochemical evidence from Cenozoic mafic lavas. Mineralogy and Petrology. 2005; 84(3-4):259-81, doi:10.1007/s00710-005-0081-9
  37. Vlastélic I. Rapid Change of Lava Composition from 1998 to 2002 at Piton de la Fournaise (Reunion) Inferred from Pb Isotopes and Trace Elements: Evidence for Variable Crustal Contamination. Journal of Petrology. 2005; 46(1):79-107, doi:10.1093/petrology/egh062
  38. Vlastélic I. Miocene climate change recorded in the chemical and isotopic (Pb, Nd, Hf) signature of Southern Ocean sediments. Geochemistry Geophysics Geosystems. 2005; 6(3), doi:10.1029/2004GC000819
  39. Workman RK, Hart SR. Major and trace element composition of the depleted MORB mantle (DMM). Earth and Planetary Science Letters. 2005; 231(1-2):53-72, doi:10.1016/j.epsl.2004.12.005


  1. Albarede F. The Stable Isotope Geochemistry of Copper and Zinc. Reviews in Mineralogy and Geochemistry. 2004; 55(1):409-27, doi:10.2138/gsrmg.55.1.409
  2. Asimow PD, Longhi J. The Significance of Multiple Saturation Points in the Context of Polybaric Near-fractional Melting. Journal of Petrology. 2004; 45(12):2349-67, doi:10.1093/petrology/egh043
  3. Bryce JG, DePaolo DJ. Pb isotopic heterogeneity in basaltic phenocrysts. Geochimica et Cosmochimica Acta. 2004; 68(21):4453-68, doi:10.1016/j.gca.2004.01.016
  4. Carbotte SM, Small C, Donnelly K. The influence of ridge migration on the magmatic segmentation of mid-ocean ridges. Nature. 2004; 429(6993):743-6, doi:10.1038/nature02652
  5. Cipriani A, Brueckner HK, Bonatti E, Brunelli D. Oceanic crust generated by elusive parents: Sr and Nd isotopes in basalt-peridotite pairs from the Mid-Atlantic Ridge. Geology. 2004; 32(8):657, doi:10.1130/G20560.1
  6. Dasgupta R, Hirschmann MM, Withers AC. Deep global cycling of carbon constrained by the solidus of anhydrous, carbonated eclogite under upper mantle conditions. Earth and Planetary Science Letters. 2004; 227(1-2):73-85, doi:10.1016/j.epsl.2004.08.004
  7. Fitton JG, Godard M. Origin and evolution of magmas on the Ontong Java Plateau. Geological Society, London, Special Publications. 2004; 229(1):151-78, doi:10.1144/GSL.SP.2004.229.01.10
  8. van de Flierdt T, Frank M, Halliday AN, Hein JR, Hattendorf B, Günther D, et al. Tracing the history of submarine hydrothermal inputs and the significance of hydrothermal hafnium for the seawater budget—a combined Pb–Hf–Nd isotope approach. Earth and Planetary Science Letters. 2004; 222(1):259-73, doi:10.1016/j.epsl.2004.02.025
  9. Gannoun A. Osmium Isotope Heterogeneity in the Constituent Phases of Mid-Ocean Ridge Basalts. Science. 2004; 303(5654):70-2, doi:10.1126/science.1090266
  10. Gill RC, Aparicio A, El Azzouzi M, Hernandez J, Thirlwall MF, Bourgois J, et al. Depleted arc volcanism in the Alboran Sea and shoshonitic volcanism in Morocco: geochemical and isotopic constraints on Neogene tectonic processes. Lithos. 2004; 78(4):363-88,doi:10.1016/j.lithos.2004.07.002
  11. Herzberg C. Partial Crystallization of Mid-Ocean Ridge Basalts in the Crust and Mantle. Journal of Petrology. 2004; 45(12):2389-405, doi:10.1093/petrology/egh040
  12. Herzberg C. Geodynamic Information in Peridotite Petrology. Journal of Petrology. 2004; 45(12):2507-30, doi:10.1093/petrology/egh039
  13. Jellinek MA, Manga M. Links between long-lived hot spots, mantle plumes, D, and plate tectonics. Reviews of Geophysics. 2004; 42(3), doi: 10.1029/2003RG000144
  14. John T, Scherer EE, Haase K, Schenk V. Trace element fractionation during fluid-induced eclogitization in a subducting slab: trace element and Lu–Hf–Sm–Nd isotope systematics. Earth and Planetary Science Letters. 2004; 227(3-4):441-56, doi:10.1016/j.epsl.2004.09.009
  15. Koepke J, Feig ST, Snow J, Freise M. Petrogenesis of oceanic plagiogranites by partial melting of gabbros: an experimental study. Contributions to Mineralogy and Petrology. 2004; 146(4):414-32, doi:10.1007/s00410-003-0511-9
  16. Kvassnes AJ, Strand AH, Moen-Eikeland H, Pedersen RB. The Lyngen Gabbro: the lower crust of an Ordovician Incipient Arc. Contributions to Mineralogy and Petrology. 2004; 148(3):358-79, doi:10.1007/s00410-004-0609-8
  17. Li Z-, Lee C-. The constancy of upper mantle fO2 through time inferred from V/Sc ratios in basalts. Earth and Planetary Science Letters. 2004; 228(3-4):483-93, doi:10.1016/j.epsl.2004.10.006
  18. Martínez-Serrano RG, Schaaf P, Solís-Pichardo G, del Hernández-Bernal MS, Hernández-Treviño T, Julio Morales-Contreras J, et al. Sr, Nd and Pb isotope and geochemical data from the Quaternary Nevado de Toluca volcano, a source of recent adakitic magmatism, and the Tenango Volcanic Field, Mexico. Journal of Volcanology and Geothermal Research. 2004; 138(1-2):77-110, doi:10.1016/j.jvolgeores.2004.06.007
  19. Meibom A, Anderson DL. The statistical upper mantle assemblage. Earth and Planetary Science Letters. 2004; 217(1-2):123-39, doi:10.1016/S0012-821X(03)00573-9
  20. Niu Y, Hekinian R. Oceanic Hotspots Ridge Suction Drives Plume-Ridge Interactions. Hekinian R, Cheminée J-L, Stoffers P, editors. Berlin, Heidelberg: Springer Berlin Heidelberg;  2004, doi:10.1007/978-3-642-18782-7_10
  21. Roberge J, White RV, Wallace PJ. Volatiles in submarine basaltic glasses from the Ontong Java Plateau (ODP Leg 192): implications for magmatic processes and source region compositions. Geological Society, London, Special Publications. 2004; 229(1):239-57, doi:10.1144/GSL.SP.2004.229.01.14
  22. Rudnick RL, Gao S, Ling W-, Liu Y-, McDonough WF. Petrology and geochemistry of spinel peridotite xenoliths from Hannuoba and Qixia, North China craton. Lithos. 2004; 77(1-4):609-37, doi:10.1016/j.lithos.2004.03.033
  23. Salters VJ, Stracke A. Composition of the depleted mantle. Geochemistry Geophysics Geosystems. 2004; 5(5), doi:10.1029/2003GC000597
  24. Straub SM, Layne GD, Schmidt A, Langmuir CH. Volcanic glasses at the Izu arc volcanic front: New perspectives on fluid and sediment melt recycling in subduction zones. Geochemistry Geophysics Geosystems. 2004; 5(1), doi:10.1029/2002GC000408
  25. Thirlwall M, Gee MA, Taylor RN, Murton BJ. Mantle components in Iceland and adjacent ridges investigated using double-spike Pb isotope ratios. Geochimica et Cosmochimica Acta. 2004; 68(2):361-86, doi:10.1016/S0016-7037(03)00424-1


  1. Anand M, Gibson SA, Subbarao KV, Kelley SP, Dickin AP. Early Proterozoic Melt Generation Processes beneath the Intra-cratonic Cuddapah Basin, Southern India. Journal of Petrology. 2003; 44(12):2139-71, doi:10.1093/petrology/egg073
  2. Asimow PD, Langmuir CH. The importance of water to oceanic mantle melting regimes. Nature. 2003; 421(6925):815-20, doi:10.1038/nature01429
  3. Barrat JA, Joron JL, Taylor RN, Fourcade S, Nesbitt RW, Jahn BM. Geochemistry of basalts from Manda Hararo, Ethiopia: LREE-depleted basalts in Central Afar. Lithos. 2003; 69(1-2):1-13, doi:10.1016/S0024-4937(03)00044-6
  4. Brunelli D, Cipriani A, Ottolini L, Peyve A, Bonatti E. Mantle peridotites from the Bouvet Triple Junction Region, South Atlantic. Terra Nova. 2003; 15(3):194-203, doi:10.1046/j.1365-3121.2003.00482.x
  5. Cavosie A, Sleverstone J. Early Proterozoic oceanic crust in the northern Colorado Front Range: Implications for crustal growth and initiation of basement faults. Tectonics. 2003; 22(2), doi:10.1029/2001TC001325
  6. Coogan LA. Contaminating the lower crust in the Oman ophiolite. Geology. 2003; 31(12):1065, doi:10.1130/G20129.1
  7. Einaudi F, Godard M, Pezard P, Cocheme JJ, Coulon C, Brewer T, et al. Magmatic cycles and formation of the upper oceanic crust at spreading centers: Geochemical study of a continuous extrusive section in the Oman ophiolite. Geochemistry Geophysics Geosystems. 2003; 4(6), doi:10.1029/2002GC000362
  8. Escartín J, Mével C, MacLeod CJ, McCaig AM. Constraints on deformation conditions and the origin of oceanic detachments: The Mid-Atlantic Ridge core complex at 15°45N. Geochemistry, Geophysics, Geosystems. 2003; 4(8), doi:10.1029/2002GC000472
  9. Georgen JE, Kurz MD, Dick HJ, Lin J. Low 3He/4He ratios in basalt glasses from the western Southwest Indian Ridge (10°-24°E). Earth and Planetary Science Letters. 2003; 206(3-4):509-28, doi:10.1016/S0012-821X(02)01106-8
  10. Gómez-Tuena A, LaGatta AB, Langmuir CH, Goldstein SL, Ortega-Gutierrez F, Carrasco-Nunez G. Temporal control of subduction magmatism in the eastern Trans-Mexican Volcanic Belt: Mantle sources, slab contributions, and crustal contamination. Geochemistry Geophysics Geosystems. 2003; 4(8), doi:10.1029/2003GC000524
  11. Hirschmann MM, Kogiso T, Baker MB, Stolper EM. Alkalic magmas generated by partial melting of garnet pyroxenite. Geology. 2003; 31(6):481, doi:10.1130/0091-7613(2003)031<0481:AMGBPM>2.0.CO;2
  12. Ito G, Lin J, Graham D. Observational and theoretical studies of the dynamics of mantle plume–mid-ocean ridge interaction. Reviews of Geophysics. 2003; 41(4), doi:10.1029/2002RG000117
  13. Jellinek AM, Gonnermann HM, Richards MA. Plume capture by divergent plate motions: implications for the distribution of hotspots, geochemistry of mid-ocean ridge basalts, and estimates of the heat flux at the core–mantle boundary. Earth and Planetary Science Letters. 2003; 205(3-4):361-78, doi:10.1016/S0012-821X(02)01070-1
  14. Klein EM. Geochemistry of the Igneous Oceanic Crust. Elsevier;  2003, doi:10.1016/B0-08-043751-6/03030-9
  15. Kohut EJ, Nielsen RL. Low-pressure phase equilibria of anhydrous anorthite-bearing mafic magmas. Geochemistry Geophysics Geosystems. 2003; 4(7), doi:10.1029/2002GC000451
  16. Macera P, Gasperini D, Piromallo C, Blichert-Toft J, Bosch D, Del Moro A, et al. Geodynamic implications of deep mantle upwelling in the source of Tertiary volcanics from the Veneto region (South-Eastern Alps). Journal of Geodynamics. 2003; 36(5):563-90, doi:10.1016/j.jog.2003.08.004
  17. McDonough WF. Compositional Model for the Earth's Core. Elsevier;  2003.
  18. Niu Y. Origin of ocean island basalts: A new perspective from petrology, geochemistry, and mineral physics considerations. Journal of Geophysical Research. 2003; 108(B4), doi:10.1029/2002JB002048
  19. Pertermann M. Partial melting experiments on a MORB-like pyroxenite between 2 and 3 GPa: Constraints on the presence of pyroxenite in basalt source regions from solidus location and melting rate. Journal of Geophysical Research. 2003; 108(B2), doi:10.1029/2000JB000118
  20. Spiegelman M, Kelemen PB. Extreme chemical variability as a consequence of channelized melt transport. Geochemistry Geophysics Geosystems. 2003; 4(7), doi:10.1029/2002GC000336
  21. Staudigel H. Hydrothermal Alteration Processes in the Oceanic Crust. Elsevier;  2003, doi:10.1016/B0-08-043751-6/03032-2
  22. Stracke A, Bizimis M, V.J.M. S. Recycling oceanic crust: Quantitative constraints. Geochemistry Geophysics Geosystems. 2003; 4(3), doi:10.1029/2001GC000223
  23. Straub S. The systematics of chlorine, fluorine, and water in Izu arc front volcanic rocks: Implications for volatile recycling in subduction zones. Geochimica et Cosmochimica Acta. 2003; 67(21):4179-203, doi:10.1016/S0016-7037(03)00307-7
  24. Su Y, Langmuir CH, Asimow PD. PetroPlot: A plotting and data management tool set for Microsoft Excel. Geochemistry Geophysics Geosystems. 2003; 4(3), doi:10.1029/2002GC000323
  25. Weyer S, Münker C, Mezger K. Nb/Ta, Zr/Hf and REE in the depleted mantle: implications for the differentiation history of the crust–mantle system. Earth and Planetary Science Letters. 2003; 205(3-4):309-24, doi:10.1016/S0012-821X(02)01059-2


  1. Albarede F, van der Hilst RD. Zoned mantle convection. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences. 2002; 360(1800):2569-92, doi:10.1098/rsta.2002.1081
  2. Ballentine CJ, van Keken PE, Porcelli D, Hauri EH. Numerical models, geochemistry and the zero-paradox noble-gas mantle. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences. 2002; 360(1800):2611-31, doi:10.1098/rsta.2002.1083
  3. Braun MG. Dunite distribution in the Oman Ophiolite: Implications for melt flux through porous dunite conduits. Geochemistry Geophysics Geosystems. 2002; 3(11), doi:10.1029/2001GC000289
  4. Cooper KM. Origin of mafic magmas beneath northwestern Tibet: Constraints from 230Th-238U disequilibria. Geochemistry Geophysics Geosystems. 2002; 3(11), doi:10.1029/2002GC000332
  5. Cottrell E. Consequences of diffusive reequilibration for the interpretation of melt inclusions. Geochemistry Geophysics Geosystems. 2002; 3(4), doi:10.1029/2001GC000205
  6. Gasperini D. Upwelling of deep mantle material through a plate window: Evidence from the geochemistry of Italian basaltic volcanics. Journal of Geophysical Research. 2002; 107(B12), doi:10.1029/2001JB000418
  7. Jull M, Kelemen P, Sims K. Consequences of diffuse and channelled porous melt migration on uranium series disequilibria. Geochimica et Cosmochimica Acta. 2002; 66(23):4133-48, doi:10.1016/S0016-7037(02)00984-5
  8. Kamenetsky VS. Mantle-melt Evolution (Dynamic Source) in the Origin of a Single MORB Suite: a Perspective from Magnesian Glasses of Macquarie Island. Journal of Petrology. 2002; 43(10):1909-22, doi:10.1093/petrology/43.10.1909
  9. van Keken PE, Hauri EH, Ballentine CJ. Mantle Mixing: The Generation, Preservation, and Destruction of Chemical Heterogeneity. Annual Review of Earth and Planetary Sciences. 2002; 30(1):493-525,doi:10.1146/
  10. Kellogg JB, Jacobsen SB, O’Connell RJ. Modeling the distribution of isotopic ratios in geochemical reservoirs. Earth and Planetary Science Letters. 2002; 204(1-2):183-202,doi:10.1016/S0012-821X(02)00981-0
  11. Leroux P, le Roex A, Schilling J-. MORB melting processes beneath the southern Mid-Atlantic Ridge (40–55°S): a role for mantle plume-derived pyroxenite. Contributions to Mineralogy and Petrology. 2002; 144(2):206-29, doi:10.1007/s00410-002-0376-3
  12. LerouxP, le Roex A, Schilling J-. Crystallization processes beneath the southern Mid-Atlantic Ridge (40–55°S), evidence for high-pressure initiation of crystallization. Contributions to Mineralogy and Petrology. 2002; 142(5):582-602, doi:10.1007/s00410-001-0312-y
  13. Melson WG. A data brief on the Smithsonian Abyssal Volcanic Glass Data File. Geochemistry Geophysics Geosystems. 2002; 3(4), doi:10.1029/2001GC000249
  14. le Roux PJ, le Roex AP, Schilling J-, Shimizu N, Perkins WW, Pearce NJ. Mantle heterogeneity beneath the southern Mid-Atlantic Ridge: trace element evidence for contamination of ambient asthenospheric mantle. Earth and Planetary Science Letters. 2002; 203(1):479-98, doi:10.1016/S0012-821X(02)00832-4
  15. Saal AE, Hauri EH, Langmuir CH, Perfit MR. Vapour undersaturation in primitive mid-ocean-ridge basalt and the volatile content of Earth's upper mantle. Nature. 2002; 419(6906):451-5, doi:10.1038/nature01073
  16. Vlastélic I, Bougault H, Dosso L. Heterogeneous heat production in the Earth’s upper mantle: blob melting and MORB composition. Earth and Planetary Science Letters. 2002; 199(1-2):157-72, doi:10.1016/S0012-821X(02)00538-1
  17. Zack T, Kronz A, Foley SF, Rivers T. Trace element abundances in rutiles from eclogites and associated garnet mica schists. Chemical Geology. 2002; 184(1-2):97-122, doi:10.1016/S0009-2541(01)00357-6


  1. Albarède F. Reply to the Comment by Igor M. Villa, Balz S. Kamber, and Thomas F. Nägler on “The Nd and Hf isotopic evolution of the mantle through the Archean. Results from the Isua supracrustals, West Greenland, and from the Birimian terranes of West Africa”. Geochimica et Cosmochimica Acta. 2001; 65(12):2023-5, doi:10.1016/S0016-7037(01)00560-9
  2. Albarède F. Radiogenic ingrowth in systems with multiple reservoirs: applications to the differentiation of the mantle–crust system. Earth and Planetary Science Letters. 2001; 189(1-2):59-73, doi:10.1016/S0012-821X(01)00350-8
  3. Thompson RN. Early Cretaceous Basalt and Picrite Dykes of the Southern Etendeka Region, NW Namibia: Windows into the Role of the Tristan Mantle Plume in Parana-Etendeka Magmatism. Journal of Petrology. 2001; 42(11):2049-81, doi:10.1093/petrology/42.11.2049
  4. Vlastelic I. Geographic control on Pb isotope distribution and sources in Indian Ocean Fe-Mn deposits. Geochimica et Cosmochimica Acta. 2001; 65(23):4303-19, doi:10.1016/S0016-7037(01)00713-X


  1. Blichert-Toft J, Gasperini D, Bosch D, Del Moro A, Macera P, Télouk P, et al. Evidence from Sardinian basalt geochemistry for recycling of plume heads into the Earth's mantle. Nature. 2000; 408(6813):701-4, doi:10.1038/35047049