1. Angel, D., Albert, H., Tuan, L., Phi, N., Utami, S., Khanh, P., Widiwijayanto, C., Costa, F., 2019, PWD: A Petrological Workspace & Database tool, G-Cubed, doi: 10.1029/2019GC008710
  2. Barbero, E., Festa, A., Saccani, E., Catanzariti, R., D’Onofrio, R., 2019, Redefinition of the Ligurian Units at the Alps–Apennines junction (NW Italy) and their role in the evolution of the Ligurian accretionary wedge: constraints from mélanges and broken formations, Journal of the Geological Society, doi:10.1144/jgs2019-022
  3. Belay, I., Tanaka, R., Kitagawa, H., Kobayashi, K., Nakamura, E., 2019, Origin of ocean island basalts in the West African passive margin without mantle plume involvement, Nature Communications, doi: 10.1038/s41467-019-10832-7
  4. Benjamin, W., O’Neil, J., Rizo, H., 2019, Geochemistry and petrogenesis of the early Archean mafic crust from the Saglek-Hebron Complex (Northern Labrador), Precambrian Research, doi:10.1016/j.precamres.2019.04.001
  5. Bennett, E., Jenner, F., Millet, M-A., Cashman, V., Lissenberg, C., 2019, Deep roots for mid-ocean-ridge volcanoes revealed by plagioclase-hosted melt inclusions, Nature, doi: 10.1038/s41586-019-1448-0
  6. Bosworth, W., Khalil, S., Ligi, M., Stockli, D., McClay, K., 2019, Geology of Egypt: The Northern Red Sea, In: Hamimi Z., El-Barkooky A., Martínez Frías J., Fritz H., Abd El-Rahman Y. (eds) The Geology of Egypt. Regional Geology Reviews. Springer, Cham, doi:10.1007/978-3-030-15265-9_9
  7. Burton-Johnson, A., Macpherson, C., Ottley, C., Nowell, G., Boyce, A., 2019, Generation of the Mt Kinabalu granite by crustal contamination of intraplate magma modelled by Equilibrated Major Element Assimilation with Fractional Crystallisation (EME-AFC), Journal of Petrology, doi:10.1093/petrology/egz036
  8. Chen, S., Hin, R., John, T., Brooker, R., Bryan, B., Niu, Y., Elliott, T., 2019, Molybdenum systematics of subducted crust record reactive fluid flow from underlying slab serpentine dehydration, Nature Communications, doi: 10.1038/s41467-019-12696-3
  9. Chen, Y., Niu, Y., Wang, X., Gong, H., Guo, P., Gao, Y., Shen, F., 2019, Petrogenesis of ODP Hole 735B (Leg 176) Oceanic Plagiogranite: Partial Melting of Gabbros or Advanced Extent of Fractional Crystallization? G-Cubed, doi:10.1029/2019GC008320
  10. Choi, H-O., Choi, S-I., Lee, Y-S., Ryu, J-S., Lee, D-C., Lee, S-G., Sohn, Y-K., Liu, J-Q., 2019, Petrogenesis and mantle source characteristics of the late Cenozoic Baekdusan (Changbaishan) basalts, North China Craton. Gondwana Research, doi:10.1016/j.gr.2019.08.004
  11. Crow, M., Van Waveren, I., Hasibuan, F., 2019, The geochemistry, tectonic and palaeogeographic setting of the Karing Volcanic Complex and the Dusunbaru pluton, an early Permian volcanic-plutonic centre in Sumatra, Indonesia,J Asian Earth Sci, doi: 10.1016/j.jseaes.2018.08.003
  12. Davydova, M.Y., Martynov, Y.A., Perepelov, A.B., 2019, Evolution of the Isotopic-Geochemical Composition of Rocks of Uksichan Volcano, Sredinnyi Range, Kamchatka, and Its Relations to the Tectonic Restyling of Kamchatka in the Neogene, Petrology, doi:10.1134/S0869591119030020
  13. de Graaff, S., Goodenough, K., Klaver, M., Lissenberg, C., Jansen, M., Millar, I., Davies, G., 2019, Evidence for a moist to wet source transition throughout the Oman‐UAE Ophiolite, and implications for the geodynamic history, G-Cubed, doi: 10.1029/2018GC007923
  14. Dolinschi, J., Shim., S., 2019, Teaching Resource in Jupyter Notebooks for Accessing and Analyzing Large Research Databases in Earth and Planetary Science, American Geophysical Union, Fall Meeting 2019, abstract #ED53F-0904, Bibcode: 2019AGUFMED53F0904D
  15. Dürkefälden, A., Hoernle, K., Hauff, F., Wartho, J-A., van den Bogaard, P., Werner, R., 2019, Age and geochemistry of the Beata Ridge: Primary formation during the main phase (~89 Ma) of the Caribbean large Igneous Province, Lithos, doi: 10.1016/j.lithos.2018.12.021
  16. Fang, X., Zeng , Z., Hu, S., Li, X., Chen, Z., Chen, S., Zhu, B., 2019, Origin of Pumice in Sediments from the Middle Okinawa Trough: Constraints from Whole-Rock Geochemical Compositions and Sr-Nd-Pb Isotopes, Journal of Marine Science and Engineering, doi: 10.3390/jmse7120462
  17. Freymuth, H., Andersen, M., Elliott, T., 2019, Uranium isotope fractionation during slab dehydration beneath the Izu arc, EPSL, doi: 10.1016/j.epsl.2019.07.006
  18. Gard, M., Hasterok, D., Halpin, J., 2019, Global whole-rock geochemical database compilation, Earh System Science Data, doi: 10.5194/essd-11-1553-2019
  19. Gard, M., Hasterok, D., Hand, M., Cox, G., 2019, Variations in continental heat production from 4 Ga to the present: Evidence from geochemical data, Lithos, doi:10.1016/j.lithos.2019.05.034
  20. Gianola, et al., 2019, The crust-mantle transition of the Khantaishir arc ophiolite (western Mongolia), Journal of Petrology, doi:10.1093/petrology/egz009
  21. Gisbert Pinto, G., Mangler, M., Prytulak, J., Degado-Granados, H., Petrone, C., 2019, Interplinian effusive activity at Popocatépetl volcano, Mexico: New insights into evolution and dynamics of the plumbing system, Volcanica, doi: 10.30909/vol.02.01.4572
  22. Greber, N., Dauphas, N., 2019, The chemistry of fine-grained terrigenous sediments reveals a chemically evolved Paleoarchean emerged crust, Geochimica et Cosmochimica Acta, doi:10.1016/j.gca.2019.04.012
  23. Han, S., Li, M-C., Zhang, Q., Li, H., 2019, A Mathematical Model Based on Bayesian Theory and Gaussian Copula for the Discrimination of Gabbroic Rocks from Three Tectonic Settings, Journal of Geology, doi:10.1086/705413
  24. Han, S., Li, M., Ren, Q., 2019, Discriminating among tectonic settings of spinel based on multiple machine learning algorithms, Big Earth Data, doi: 10.1080/20964471.2019.1586074
  25. Hannington, M., Kopp, H., Schnabel, M., Devey, C., Petersen, S. 2019, RV SONNE Fahrtbericht/Cruise Report SO267,Berichte aus dem GEOMAR, Helmholtz-Zentrum für Ozeanforschung Kiel, doi: 10.3289/GEOMAR_REP_NS_49_2019
  26. Haraguchi, S, Ueki, K., Yoshida, K., Kuwatani, T., Mohamed, M., Iwamori, H., 2019, Geochemical database of Japanese islands based on published domestic data: standardization of data and high-precision location coordinates, AGU Fall meeting Abstracts, https://ui.adsabs.harvard.edu/abs/2019AGUFM.V11C..15H
  27. Haraguchi, S., Ueki, K., Yoshida, K., Kuwatani, T., Mohamed, M., Iwamori, H., 2019, The geochemical database “DODAI” with high-precision location
    coordinates, Japan Geoscience Meeting 2019, MGI33-P01
  28. Harrison, L., Weiss, D. Garcia, M., 2019, The Multiple Depleted Mantle Components in the Hawaiian-Emperor Chain: A Review, Chemical Geology, doi: 10.1016/j.chemgeo.2019.119324
  29. He, Y., Bai, Y., Tian, D., Yao, L., Fan, R., Chen, P.2019, A review of geoanalytical databases, Acta Geochimica, doi:10.1007/s11631-019-00323-3
  30. He, Y., Tian, Wang, H., Yao, L., Yu, M., Chen, P., .2019, A universal and multi-dimensional model for analytical data on geological samples, Geosci. Instrum. Method. Data Syst, doi:10.5194/gi-8-277-2019
  31. Hernandez-Uribe, D., Palin, R., 2019, Petrological model for subducted oceanic crust, J Metamorphic Geology, doi: 10.1111/jmg.12483
  32. Herzberg, et al., 2019, Origin of high-Mg bimineralic eclogite xenoliths in kimberlite: A comment on a papers by Aulbach and Arndt (2019), EPSL, doi: 10.1016/j.epsl.2019.01.014
  33. Hole, et al., 2019, Magmatism in the North Atlantic Igneous Province; mantle temperatures, rifting and geodynamics, Earth Science Reviews, doi:10.1016/j.earscirev.2019.02.011
  34. Homrighausen, S., Hoernle, K., Hauff, F., Wartho, J.-A., van den Bogaard, P., Garbe-Schönberg, D., 2019, New age and geochemical data from the Walvis Ridge: The temporal and spatial diversity of South Atlantic intraplate volcanism and its possible origin, GCA, doi: 10.1016/j.gca.2018.09.002
  35. Iwamori, H., Nakamura, H., Yoshida, M., Nakagawa, T., Ueki, K., Nakao, A., Nishizawa, T., Haraguchi,S., 2019, Trace-element characteristics of east–west mantle geochemical hemispheres,Comptes Rendus Geoscience,doi:10.1016/j.crte.2018.09.007
  36. Jaques, G., Hauff, F., Joernle, K., Werner, R., Uenzelmann-Neben, G., Garbe-Schoenberg, D., Fischer, M., 2019, Nature and origin of the Mozambique Ridge, SW Indian Ocean, Chemical Geology, doi: 10.1016/j.chemgeo.2018.12.027
  37. Jones, R., van Keken, P., Hauri, E., Tucker, J., Vervoort, J., Ballentine, C., 2019, Origins of the terrestrial Hf-Nd mantle array: Evidence from a combined geodynamical-geochemical approach, EPSL, doi:10.1016/j.epsl.2019.04.015
  38. Jones, M., 2019, Geophysical and Geochemical Constraints on Submarine Volcanic Processes, Doctoral Thesis MIT-WHOI
  39. Jones, M., Wanless, V., Soule, S., Kurz, M., Mittelstaedt, E., Fornari, D. J.Curtice, J., Klein, F., Le Roux, V., Brodsky, H., Péron, S., Schwartz, D., 2019, New constraints on mantle carbon from Mid-Atlantic Ridge popping rocks, EPSL, doi: 10.1016/j.epsl.2019.01.019
  40. Kokhan, A., Dubinin, E., Sushchevskaya, N., 2019, Structure and Evolution of the Eastern Part of the Southwest Indian Ridge, Geotectonics, doi: 10.1134/S0016852119040034
  41. Lambart, S., Koorneef, J., Millet, M-A., Davies, G., Cook, M., Lissenberg, C., 2019, Highly heterogeneous depleted mantle recorded in the lower oceanic crust, Nature Geoscience, doi:10.1038/s41561-019-0368-9
  42. Lao, J., 2019, Visualization analysis, how can we read data visualizations? Carnegie Mellon University, Department of Statistics and Data Science, kilthub.cmu.edu
  43. Larrea, P., Widom, E., Siebe, C., Salinas, S., Kuentz, D, 2019, A re-interpretation of the petrogenesis of Paricutin volcano: Distinguishing crustal contamination from mantle heterogeneity, Chemical Geology, doi: 10.1016/j.chemgeo.2018.10.026
  44. Le Voyer, M., Hauri, E. H., Cottrell, E., Kelley, K. A., Salters, V. J. M., Langmuir, C. H., et al. ,2019, Carbon fluxes and primary magma CO2 contents along the global mid-ocean ridge system. Geochemistry, Geophysics, Geosystems, doi:10.1029/2018GC007630
  45. Leath, J., 2019, Metals in subduction related magmatism: Insights from melt inclusions and associated glassy groundmass from the Southern Kermadec Arc, New Zealand, Thesis, Victoria University of Wellington.
  46. Li, W., Tao, C., Zhang, W., Liu, J., LIang, J., Liao, S., Yang, W., 2019, Melt Inclusions in Plagioclase Macrocrysts at Mount Jourdanne, Southwest Indian Ridge (~64◦ E): Implications for an Enriched Mantle Source and Shallow Magmatic Processes, Minerals, doi:10.3390/min9080493
  47. Lieu, W., 2019, Statistical Treatment and Modeling of Geochemical Data of Volcanic Arcs, PhD Thesis, University of Texas, Dallas, 159 pp.
  48. Lieu, W., and Stern, R., 2019, The robustness of Sr/Y and La/Yb as proxies for crust thickness in modern arcs, Geosphere, doi: 10.1130/GES01667.1
  49. Lin, C., Harris, R., Sun W., Zhang, G., 2019, Geochemical and Geochronological Constraints on the Origin and Emplacement of the East Taiwan Ophiolite, G-Cubed, doi: 10.1029/2018GC007902
  50. Lissenberg, J., MacLeod, C., Bennett, E., 2019, Consequences of crystal mush-dominated magma plumbing system: a mid-ocean ridge perspective.Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, doi:10.1098/rsta.2018.0014
  51. Liu, B., Liang, Y., 2019, Importance of the size and distribution of chemical heterogeneities in the mantle source to the variations of isotope ratios and trace element abundances in mid-ocean ridge basalts, GCA, doi: 10.1016/j.gca.2019.10.013
  52. Liu, C., Runyon, S., Knoll, A., Hazen R., 2019, The same and not the same: Ore geology, mineralogy and geochemistry of Rodinia assembly versus other supercontinents, Earth-Sconce Reviews, doi:10.1016/j.earscirev.2019.05.004
  53. Liu, H., Sun W-D., Deng, J., 2019, Statistical analysis on secular records of igneous geochemistry: Implication for the early Archean plate tectonics, Geological Journal, doi: 10.1002/gj.3484
  54. Liu, H., Sun, W-D., Deng, J-H., 2019, Transition of subduction-related magmatism from slab melting to dehydration at 2.5 Ga, Precambrian Research, doi: 10.1016/j.precamres.2019.105524
  55. Liu, H., Sun, W., Zartman, R., Tang, M., 2019, Continuous plate subduction marked by the rise of alkali magmatism 2.1 billion years ago, Nature Communications, doi:10.1038/s41467-019-11329-z
  56. Long, X., Geldmacher, J., Hoernle, K., Hauff, F., Wartho, A., Garbe-Schoenberg, D., Grevemeyer, I., 2019, Age and origin of Researcher Ridge and an explanation for the 14 N anomaly on the Mid-Atlantic Ridge by plume-ridge interaction, Lithos, doi: 10.1016/j.lithos.2019.01.005
  57. Lustrino, M., Luciani, N., Stagno, V., 2019, Fuzzy petrology in the origin of carbonatitic/pseudocarbonatitic Ca-rich ultrabasic magma at Polino (central Italy), Nature, doi:10.1038/s41598-019-45471-x
  58. Mallick, S., Salters, V., Langmuir, C., 2019, Geochemical Variability Along The Northern East Pacific Rise: Coincident Source Composition and Ridge Segmentation,G-Cubed, doi: 10.1029/2019GC008287
  59. Mana, S., Fontijn, K., DiMaggio, E., 2019,Compiling geochemistry, geochronology and physical information of EAR explosive events to constrain the spatial and temporal evolution of the rift,
    American Geophysical Union, Fall Meeting 2019, abstract #V11C-04, BibCode: 2019AGUFM.V11C..04M
  60. Mangler, M., Prytulak, J., Gisbert, G., Delgado-Granados, H., Petrone, C.,2019, Interplinian effusive activity at Popocatepetl volcano, Mexico : new insights into evolution and dynamics of the plumbing system, Volcanica, doi: 10.30909/vol.02.01.4572
  61. McNamara, A., 2019, A review of large low shear velocity provinces and ultra low velocity zones, Tectonophysics, doi:10.1016/j.tecto.2018.04.015
  62. Nakashole, A., le Roex, A., Reid, D., 2019, Geochemistry and petrogenesis of the Tsirub nephelinite intrusions, southern Namibia, J Afr Earth Svi, doi:10.1016/j.jafrearsci.2019.103701
  63. Naumova, V., Eremenko, V., Platonov, K., Dyakov, S.,Eremenko, A., 2019, Development of geographically distributed information-analytical geological environment, Russian Journal of Earth Sciences, doi: 10.2205/2019ES000696
  64. Naumova, V., Platonov, K., Eremenko, V., Patuk, M., Dyakov, S., 2019, Information and analytical environment to support scientific research in geology: current status and prospects for development,XVII INTERNATIONAL CONFERENCE OF DISTRIBUTED INFORMATION-COMPUTATIONAL RESOURCES (DICR-2019), Russia, Novosibirsk, 2019, doi: 10.25743/ICT.2019.70.61.021
  65. Nauret, F., Famin, V., Vlastelic, I., Gannoun, A., 2019, A trace of recycled continental crust in the Réunion hotspot, Chemical Geology, doi:10.1016/j.chemgeo.2019.06.009
  66. Nebel, O., Sossi, P., Benard, A., Arculus, R., Yaxley, M., Davies, D., Ruttor, S., 2019, Reconciling petrological and isotopic mixing mechanisms in the Pitcairn mantle plume using stable Fe isotopes, EPSL, doi:10.1016/j.epsl.2019.05.037
  67. Ni, P., Zhang, Y., Chen, S., Gagnon, J., 2019, A melt inclusion study on volatile abundances in the lunar mantle, GCA, doi:10.1016/j.gca.2018.12.034
  68. Ootes, L., Sandeman, H., Cousens, B., Luo, Y., Pearson, G., Jackson, V., 2019, Pyroxenitic magma conduits (ca. 1.86 Ga) in Wopmay orogen and Slave craton: Petrogenetic constraints from whole rock and mineral chemistry, Lithos, doi: 10.1016/j.lithos.2019.105220
  69. Ou, Q., Wang, Q., Wyman, D., Zhang, C., Hao, L-L., Dan, W., Jiang, Z-Q., Wu, F-Y., Yang,J-H., Zhang, H-X., Xia,X-P., Ma,L., Long,X-P., Li, J., 2019, Postcollisional delamination and partial melting of enriched lithospheric mantle: Evidence from Oligocene (ca. 30 Ma) potassium-rich lavas in the Gemuchaka area of the central Qiangtang Block, Tibet. GSA Bulletin, doi: 10.1130/B31911.1
  70. Ozturk, M., 2019, Assessment of discrimination of mafic rocks using trace element systematics with machine learning, PhD Thesis, Middle East Tehcnical University, 326 p.
  71. Pantazidis, A., Baziotis, I., Solomonidou, A., Manoutsoglou, E., Palles, D., Kamitsos, E., Karageorgis, A., Profitiliotis, G., Kondoyanni, M., Klemme, S., Berndt, J., Ming, D., Asimow, P., 2019, Santorini volcano as a potential Martian analogue: The Balos Cove Basalts, doi:10.1016/j.icarus.2019.02.026
  72. Park, S-H., Langmuir, C., Sims, K., Blichert-Toft, J., Kim, S-S., Scott, S., Lin, J., Choi, H., Yang, Y-S., Michael, P., 2019, An isotopically distinct Zealandia–Antarctic mantle domain in the Southern Ocean, Nature Geoscience, doi:10.1038/s41561-018-0292-4
  73. Parr, C., Gries, C., O’Brien, M., Downs, R., Duerr, R., Koskela, R., Tarrant, P., Maull, K., Hoelbelheinrich, N., Stall, S., 2019, A Discussion of Value Metrics for Data Repositories in Earth and Environmental Sciences, Data Science Journal, doi: 10.5334/dsj-2019-058
  74. Platonov, K., Naumova, V., Eremenko, V., Dyakov, S, 2019,Information and Analytical Environment to Support Scientific Research in Geology: Current Status and Development Perspectives, CEUR Workshop
  75. Rampone, E. Borghini, G., Bashc, V., 2019, Melt migration and melt-rock reaction in the Alpine-Apennine peridotites: Insights on mantle dynamics in extending lithosphere.Geoscience Frontiers, doi: 10.1016/j.gsf.2018.11.001
  76. Ren, Q., Li, M., Han, S., Zhang, Y., Zhang, Q., Shi, J., 2019, Basalt Tectonic Discrimination Using Combined Machine Learning Approach, Minerals, doi:10.3390/min9060376
  77. Rumbolo, T., 2019, Sr-Nd-Pb-Hf- isotopic study of mantle rocks in the ophiolitic sequences of the Alpine-Apennine orogenic belt: Implications for heterogeneity in the MORB sources, Plinius, doi:10.19276/plinius.2019.01011
  78. Sano, T., Yamashita, S., 2019, Evolution, hydrothermal assimilation, and ascent of magma inferred from volatile contents in MORB glasses: An example from thick lava pile at IODP Site 1256, Lithos, doi: 10.1016/j.lithos.2019.07.010
  79. Shervais, J. W., Reagan, M., Haugen, E., Almeev, R. R., Pearce, J. A., Prytulak, J., et al. (2019). Magmatic response to subduction initiation: Part 1. Fore-arc basalts of the Izu-Bonin arc from IODP Expedition 352. Geochemistry, Geophysics, Geosystems, 20, 314– 338. doi:10.1029/2018GC007731
  80. Shimizu, K., Ito, M., Chang, Q., Miyazaki, T., Ueki, K., Toyama, C., Sends, R., Vaglarov, B., Ishikawa, T., Kimura, J-I., 2019, Identifying volatile mantle trend with the water–fluorine–cerium systematics of basaltic glass, Chemical Geology, doi:10.1016/j.chemgeo.2019.06.014
  81. Shimizu, K., Saal, A., Hauri, E., Perfit, M., Hekinian, R., 2019,Evaluating the roles of melt-rock interaction and partial degassing on the CO2/Ba ratios of MORB: implications for the CO2 budget in the Earth’s depleted upper mantle, GCA, doi:10.1016/j.gca.2019.06.013
  82. Smith, D., Schouten., H., Klein, E., Wernette, B., Parnell-Turner, R., Cann, J., Zheng, T., 2019,Formation of the Galapagos Microplate and its Effect on Rifting at the Galapagos Triple Junction, AGU Fall Meeting Absgtract, doi: 10.1002/essoar.10501854.1
  83. Tang, Y-W., Chen, L., Zhao, Z-F., Zheng, Y-F., 2019, Geochemical evidence for the production of granitoids through reworking of the juvenile mafic arc crust in the Gangdese orogen, southern Tibet, Geology, doi: 10.1130/B35304.1
  84. Tuller-Ross, B., Marty, B., Chen, H., Kelley, K., Lee, H., Wang, K., 2019, Potassium isotope systematics of oceanic basalts, GCA, doi:,10.1016/j.gca.2019.06.001
  85. Venugupal, S., Moune, S., Williams-Jones, G., Druitt, T., Vigouroux, N., Wilson, A., Russell, J., 2019, Two distinct mantle sources beneath the Garibaldi Volcanic Belt: Insight from olivine-hosted melt inclusions, Chemical Geology, doi:10.1016/j.chemgeo.2019.119346
  86. Wang, W., Chu, F., Wu, X., Li, Z., Chen, L., Li, X., Yan, Y., Zhang, J., 2019, Constraining Mantle Heterogeneity beneath the South China Sea: A New Perspective on Magma Water Content, Minerals, doi: 10.3390/min9070410
  87. Wang, J., Xiong, X., Takahashi, E., Zhang, L., Liu, X., 2019, Oxidation state of arc mantle revealed by partitioning of V, Sc and Tibetween mantle minerals and basaltic melts, JGR, doi:10.1029/2018JB016731
  88. Wanke, M., Clynne, M., von Quadt, A., Venneman, T., Bachmann, O., 2019, Geochemical and petrological diversity of mafic magmas from Mount St. Helens, Contrib Min Pet, doi:10.1007/s00410-018-1544-4
  89. Wasilewski, B., O’Neil, J., Rizo, H., 2019, Geochemistry and petrogenesis of the early Archean mafic crust from the Saglek-Hebron Complex (Northern Labrador), Precambrian Research, doi: 10.1016/j.precamres.2019.04.001
  90. Whattam, S., Montes, C., Stern, R., 2019, Early Central American forearc follows the subduction initiation rule, Gondwana Resarch, doi:10.1016/j.gr.2019.10.002
  91. Willig, M., Stracke, A., Beier, C., Salters, V., 2019, Constraints on mantle evolution from Ce-Nd-Hf isotope systematics, GCA, doi:10.1016/j.gca.2019.12.029
  92. Wu, X., Tian, L., Wang, X-C, Chu, F., Yan, Q., Sun, F., Li, X., Wang, W., Yu, L., Li, Z., Chen, L., 2019, Tracing mantle sources in the northern Lau backarc basin by independent component analysis of basalt isotopic compositions, International Geology Review, doi: 10.1080/00206814.2018.1561337
  93. Wu, Y., 2019, Investigating the Applications of Neodymium Isotopic Compositions and Rare Earth Elements as Water Mass Tracers in the South Atlantic and North Pacific, PhD Thesis, Columbia University, 435 p.
  94. Wu, Y., Guo, F., Wang, X-C., Zhang, B., Zhang, X., Alemayehu, M., Wang. G., 2019, Generation of Late Cretaceous Ji’an basalts through asthenosphere-slab interaction in South China, Geol Soc America Bull., doi:10.1130/B35196.1
  95. Xu, C., Inoue, T., 2019, Melting of Al-richphase D up to the uppermost lower mantle and transportation of H2O to the deep Earth, G-Cubed, doi:10.1029/2019GC008476
  96. Yang, A., Wang, C., Liang, Y., Lissenberg, C., 2019, Reaction between mid-ocean ridge basalt and lower oceanic crust: An experimental study, G-Cubed, doi:10.1029/2019GC008368
  97. Yao, J-H., Zhu, W-G., Li, C., Zhong, H., Yu, S., Ripley, E., Bai, Z-J., 2019, Olivine O isotope and trace element constraints on source variation of picrites in the Emeishan flood basalt province, SW China, Lithos, doi: 10.1016/j.lithos.2019.04.019
  98. Yierpan, A., Konig, S., Labidi, J., Schoenberg, R., 2019, Selenium isotope and S-Se-Te elemental systematics along the Pacific-Antarctic ridge: Role of mantle processes,GCA, doi:10.1016/j.gca.2019.01.028
  99. Yoder, M., 2019, Evaluating the Iron Geochemistry of Terrestrial Aerosol Sources to the Subarctic Pacific Ocean,Honors Theses. Paper 919.
    https://digitalcommons.colby.edu/honorstheses/919
  100. Xia, L., Li, X., 2019, Basalt geochemistry as a diagnostic indicator of tectonic setting, Gondwana Research, doi:10.1016/j.gr.2018.08.006
  101. Yu, X., Dick, H., 2019, Plate-driven micro-hotspots and the evolution of the Dragon Flag melting anomaly, Southwest Indian Ridge, EPSL, doi:10.1016/j.epsl.2019.116002
  102. Yu, X., Han, X., Tang, L., Liu, J., Zhang, P., 2019, The geotectonic features of the Southeast Indian Ridge and its current research progress, Chinese Science Bulletin, doi: 10.1360/N972018-01136
  103. Yu, Y., Sun. M., Yuan, C., Zhao, G., Huang, X-L., Rojas-Agramonte, Y, Chem, Q., 2019, Evolution of the middle Paleozoic magmatism in the Chinese Altai: Constraints on the crustal differentiation at shallow depth in the accretionary orogen, J East Asian Earth Sci, doi:10.1016/j.jseaes.2018.07.026
  104. Zhang, L., Sun, W,m Zhang, Z., An, Y., Liu, F., 2019, Iron isotope behavior during melt‐peridotite interaction in supra‐subduction zone ophiolite from Northern Tibet, JGR Solid Earth, doi:10.1029/2019JB018823
  105. Zhang, L., Sun, W., Chen. R-X., 2019, Evolution of serpentinite from seafloor hydration to subduction zone metamorphism: petrology and geochemistry of serpentinite from the ultrahigh pressure North Qaidam orogen in northern Tibet, Lithos, doi:10.1016/j.lithos.2019.105158′
  106. Zhang, Q., Sun, W., Zhao, Y., Yuan, F., Jiao, S., Chen, W., 2019, New discrimination diagrams for basalts based on big data research, Big Earth Data, doi: 10.1080/20964471.2019.1576262
  107. Zheng, H., Zhong, L., Wang, R., Yang, L., Kapsiotis, A., Xiao, Y., Wan, Z, 2019, Geochemistry and geochronology of mafic rocks from the Jinghe ophiolitic mélange, northwest China: implications for plume-related magmatism and accretionary processes within the North Tianshan Ocean, Lithos, doi:10.1016/j.lithos.2019.105246
  108. Zhou, G., Wang, Y., Shi, Y., , Xie, H., Li, D, Guo, B., 2019, Geochronology and geochemistry of mafic intrusions in the Kalatag area, eastern Tianshan. Acta Petrologica Sinica, doi:10.18654/1000-0569/2019.10.14
  109. Zhou, X., 2019, Analytical development for precise and accurate determination of highly siderophile elements in geological samples and its application to the study of Horoman peridotite massif, Japan, PhD Thesis, Okayama University, 137 p.,
  110. Zhu, L., Zhang, G., Liu,Y., Lin, J., Tong, X., Jiang, S., J., 2019, Improved in-situ Determination of Sr Isotope Ratio in Silicate Samples Using LA-MC-ICP-MS and Its Wider Application for Fused Rock Powder, Earth Sci., doi: 10.1007/s12583-019-1214-0