1. Agterhuis, T., Ziegler, M., de Winter, N.J. et al., 2022, Warm deep-sea temperatures across Eocene Thermal Maximum 2 from clumped isotope thermometry. Commun Earth Environ, doi:10.1038/s43247-022-00350-8
  2. Aiuppa, A., Allard, P., Bernard, B., et al., 2022, Gas leakage from shallow ponding magma and trapdoor faulting at Sierra Negra volcano (Isabela Island, Galapagos), G Cubed, doi:10.1029/2021GC010288
  3. Aiuppa, A., Bitetto, M., Calabrese, S., Delle Donne, D., Lages, J., La Monica, F. P., Chiodini, G., Tamburello, G., Cotterill, A., Fulignati, P., Gioncada, A., Liu, E. J., Moretti, R., & Pistolesi, M., 2022, Mafic magma feeds degassing unrest at Vulcano Island, Italy. Communications Earth & Environment. doi: 10.1038/s43247-022-00589-1
  4. Amann, B., Bertrand, S., Alvarez-Garreton, C., Reid, B., 2022, Seasonal variations in fjord sediment grain size: A pre-requisite for hydrological and climate reconstructions in partially glacierized watersheds (Baker River, Patagonia), JGR. doi:10.1029/2021JF006391
  5. Andrews, B. J., Costa, F., Venzke, E., & Widiwijayanti, C., 2022, Databases in Volcanology, Bulletin of Volcanology, doi:10.1007/s00445-022-01597-x
  6. Audhkhasi, P., & Singh, S. C., 2022, Discovery of distinct lithosphere-asthenosphere boundary and the Gutenberg discontinuity in the Atlantic Ocean. Science Advances, 8(24). doi:10.1126/sciadv.abn5404
  7. Barnes, S-J., Mansur, E., 2022, Distribution of Te, As, Bi, Sb, and Se in Mid-Ocean Ridge Basalt and Komatiites and in Picrites and Basalts from Large Igneous Provinces: Implications for the Formation of Magmatic Ni-Cu-Platinum Group Element Deposits. Economic Geology. doi:10.5382/econgeo.4887
  8. Bachmann, O., Malone, S., Vidale, J., Bergantz, G., Creager, K., Booker, J., Sisson, T., Pallister, J., Moran, S., Denliger, R., Levander, A., Brown, J., Beroza, G., DeCelles, P., Kapp, P., Beck, S., Derry, L., Schopka, H., Dick, H., … Kirby, S., (n.d.), List of White Papers, alphabetical by surname of first author. 
  9. Becker, K., Davis, E. E., & Villinger, H., (n.d.), Long-Term Observations of Subseafloor Temperatures and Pressures in a Low-Temperature, Off-axis Hydrothermal System in North Pond on the Western Flank of the Mid-Atlantic Ridge, Geochemistry, Geophysics, Geosystems. doi:10.1029/2022GC010496
  10. Brehm, S. K., & Lange, R. A., 2022, Origin of low Mg# hawaiites carrying peridotite xenoliths from the Cima volcanic field, California, USA: Evidence of rapid magma mixing during ascent along intersecting fractures. GSA Bulletin. doi:10.1130/B36390.1
  11. Boone, S., Dalton, H., Prent A., et al., 2022, AusGeochem: An Open Platform for Geochemical Data Preservation, Dissemination and Synthesis, Geostandards and Geoanalytical Research, doi:10.1111/ggr.12419
  12. Boulahanis, B., Carbotte, S. M., Canales, J. P., Han, S., & Nedimović, M. R., 2022, Structure and evolution of northern Juan de Fuca crust and uppermost mantle over the last 8 Ma from an active-source seismic tomography study. Journal of Geophysical Research: Solid Earth. doi:10.1029/2022JB023987
  13. Brugman, K., Till, C. B., & Bose, M., 2022, Common assumptions and methods yield overestimated diffusive timescales, as exemplified in a Yellowstone post-caldera lava. Contributions to Mineralogy and Petrology, doi: 10.1007/s00410-022-01926-5
  14. Casetta, F.,Rizzo, A., Faccini, B., Ntaflos, T., Abart, R., Lanzafame, G., Faccincani, L., Mancini, L., Giacomoni,P., Coltorti,M., 2022, CO2 storage in the Antarctica Sub-Continental Lithospheric Mantle as revealed by intra- and inter-granular fluids, Lithos. doi:10.1016/j.lithos.2022.106643
  15. Chapman, T., Milan, A., Metcalf, I., Blevin, P., Crowley, J., 2022, Pulses in silicic arc magmatism initiate end-Permian climate instability and extinction, Nature Geoscience. doi:10.1038/s41561-022-00934-1
  16. Chen, G., Cheng, Q., Lyons, T. W., Shen, J., Agterberg, F., Huang, N., & Zhao, M., 2022, Reconstructing Earth’s atmospheric oxygenation history using machine learning, Nature Communications. doi: 10.1038/s41467-022-33388-5
  17. Chen, S., 2022, A Journey from Partition Coefficients in Melt Inclusions of Lunar Samples to the Prediction of Vibrational Modes Under High P/T Conditions and the Thermodynamics of Sulfide-mediated Redox Reactions in Sediments, Thesis.  doi:10.7302/6282
  18. Chen, Q., Liu, H., Johnson, T., Hartnady, M., Kirkland, C. L., Lu, Y., & Sun, W., 2022, Intraplate continental basalts over the past billion years track cooling of the mantle and the onset of modern plate tectonics, Earth and Planetary Science Letters. doi:10.1016/j.epsl.2022.117804
  19. Chen, S., Ni, P., Zhang, Y., & Gagnon, J., 2022, Trace element partitioning between olivine and melt in lunar basalts. American Mineralogist, doi: 10.2138/am-2022-7971
  20. Choo, S., Dellwig, O., Wäge-Recchioni, J., & Schulz-Vogt, H., 2022, Microbial-driven impact on aquatic phosphate fluxes in a coastal peatland, Marine Ecology Progress Series. doi: 10.3354/meps14210
  21. Cipar, J. H., 2022, Thermal evolution of the Rio Grande Rift and Basin and Range Lithosphere: A petrochronologic investigation, [Pennsylvania State University]. https://etda.libraries.psu.edu/files/final_submissions/27451 
  22. Cisneros-Lazaro, D., Adams, A., Guo, J. et al. ,2022, Fast and pervasive diagenetic isotope exchange in foraminifera tests is species-dependent. Nat Commun. doi:10.1038/s41467-021-27782-8
  23. Claxton, L. M., McClelland, H. L. O., Hermoso, M., & Rickaby, R. E. M., 2022, Eocene emergence of highly calcifying coccolithophores despite declining atmospheric CO2. Nature Geoscience, 1–6. doi: 10.1038/s41561-022-01006-0
  24. Clemens, J. D., Bryan, S. E., Mayne, M. J., Stevens, G., & Petford, N., 2022, How are silicic volcanic and plutonic systems related? Part 1: A review of geological and geophysical observations, and insights from igneous rock chemistry, Earth-Science Reviews doi:10.1016/j.earscirev.2022.104249
  25. Clemens, J. D., Bryan, S. E., Stevens, G., Mayne, M. J., & Petford, N., 2022, How are silicic volcanic and plutonic systems related? Part 2: Insights from phase-equilibria, thermodynamic modelling and textural evidence, Earth-Science Reviews. doi:10.1016/j.earscirev.2022.104250
  26. DiMaggio, E., Mana, S., and VanHazinga, C., 2022, EARThD: an effort to make East African tephra geochemical data available and accessible, EGU General Assembly 2022, Vienna, Austria, 23–27 May 2022, EGU22-13330, doi: 10.5194/egusphere-egu22-13330
  27. Doucet, L., Gamaleldien,H., Li,Z-X., 2022, Pitfalls in using the geochronological information from the EarthChem Portal for Precambrian time-series analysis,Precambrian Research, doi: 10.1016/j.precamres.2021.106514
  28. Doucet, L. S., Tetley, M. G., Li, Z.-X., Liu, Y., & Gamaleldien, H., 2022, Geochemical fingerprinting of continental and oceanic basalts: A machine learning approach, Earth-Science Reviews. doi: 10.1016/j.earscirev.2022.104192
  29. Elger, K., ter Maat, G., Caldeira, R., Cimarelli, C., Corbi, F., Dominguez, S., Drury, M., Funiciello, F., Lange, O., Ougier-Simonin, A., Rosenau, M., Wessels, R., Willingshofer, E., & Winkler, A., 2022, The EPOS Multi-Scale Laboratories: A FAIR Framework for stimulating Open Science practice across European Earth Sciences Laboratories. Annals of Geophysics, doi: 10.4401/ag-8790
  30. Famin, V., et al., 2022, Multi-technique Geochronology of Intrusive and Explosive Activity on Piton des Neiges Volcano, R union Island, G-Cubed, doi: 10.1029/2021GC010214
  31. Forshaw, J. B., & Pattison, D. R. M., 2022, Major-element geochemistry of pelites, Geology. doi: 10.1130/G50542.1
  32. Gordeev, E.I., Bergal-Kuvikas, O.V.,2022, Structure of the Subduction Zone and Volcanism in Kamchatka. Dokl. Earth Sc., doi: 10.1134/S1028334X22020088
  33. Grassa, F., Viveiros, F., Mckormick-Kilbride, B., Bonifaci, M., Ilynskaya, E., Iribarren, I., Luengo, N., Moreno, L., Manson, E., Moune, S., Pfeffer, M. A., Silva, C., Burton, M., Caliro, S., Muro, A. di, Esse, B., Labazuy, P., Liotta, M., Liuzzo, M., Moretti, R., Murphy, A., Salerno, G., Torres, P., Varna, A., Cacciola, L., Messina, G., n.d., Programme: H2020 Project number: 731070 EUROVOLC European Network of Observatories and Research Infrastructure for Volcanology Deliverable Report D5.3: EPOS geochemical database participation: Integration of geochemical dataset of volcanic gases in atmosphere not implemented in EPOS-IP.
  34. Gill, J., Todd, E., Hoernle, K., Hauff, F., Price, A. A., & Jackson, M. G., n.d., Breaking Up is Hard to Do: Magmatism During Oceanic Arc Breakup, Subduction Reversal, and Cessation, Geochemistry, Geophysics, Geosystems. doi: 10.1029/2022GC010663
  35. Giovannelli, D., 2022, Geosphere and Biosphere coevolution: The role of trace metals availability in the evolution of biogeochemistry. https://eartharxiv.org/repository/view/4729/
  36. Gray, K., Foster,D., Johnson, K., Isakson, V., 2022, Rotational tectonics of the Oregon–Idaho–Montana Cordillera, Tectonophysics, doi:10.1016/j.tecto.2022.229293
  37. Grenier, M., Brown, K.A., Colombo, M., Belhadj, M., Baconnais, I., Pham, V., Soon, M., Myers, P.G., Jeandel, C., François, R., 2022, Controlling factors and impacts of river-borne neodymium isotope signatures and rare earth element concentrations supplied to the Canadian Arctic Archipelago, Earth and Planetary Science Letters, dot: 10.1016/j.epsl.2021.117341
  38. Grondahl, C., & Zajacz, Z., 2022, Sulfur and chlorine budgets control the ore fertility of arc magmas. Nature Communications, doi: 10.1038/s41467-022-31894-0
  39. Gu, Y., Wang, M., Zhang, Q., Ge, L., Xu, L., Lu, H., 2022, Accurate-parametric SAR-TL dating protocols for older sediments using quartz, Applied Radiation and Isotopes, doi: 10.1016/j.apradiso.2021.110072
  40. Guns, K. A., Bennett, R., Blisniuk, K., Walker, A., Hidy, A., & Heimsath, A., n.d., Steady Long-term Slip Rate on the Blue Cut Fault: Implications for Strain Transfer between the San Andreas Fault and Eastern California Shear Zone. Geophysical Research Letters, doi:10.1029/2022GL100799
  41. Halldórsson, S. A., Marshall, E. W., Caracciolo, A., Matthews, S., Bali, E., Rasmussen, M. B., Ranta, E., Robin, J. G., Guðfinnsson, G. H., Sigmarsson, O., Maclennan, J., Jackson, M. G., Whitehouse, M. J., Jeon, H., van der Meer, Q. H. A., Mibei, G. K., Kalliokoski, M. H., Repczynska, M. M., Rúnarsdóttir, R. H., Sigurðsson, G., Pfeffer, M. A., Scott, S. W., Kjartansdóttir, R., Kleine, B. I., Oppenheimer, C., Aiuppa, A., Ilyinskaya, E., Bittet, M., Giudice, G., Stefánsson, A., 2022, Rapid shifting of a deep magmatic source at Fagradalsfjall volcano, Iceland, Nature. doi: 10.1038/s41586-022-04981-x
  42. Harmon, N. M., 2022, First-row Transition Element Distribution Across the Blueschist-Eclogite Transition: A Case Study From New Caledonia, Electronic Theses and Dissertations.https://digitalcommons.library.umaine.edu/etd/3717
  43. Haproff, P. J., Levy, D. A., Zuza, A. V., Hooker, J. D., Heizler, M. T., Stockli, D. F., & Braza, M., 2022, Cenozoic kinematic histories of the Tidding and Lohit thrusts in the northern Indo-Burma Ranges: Implications for crustal thickening and exhumation of Gangdese lower arc crust along the Indus-Yarlung suture zone. GSA Bulletin. doi:10.1130/B36323.1
  44. Hazen, R. M., Morrison, S. M., Krivovichev, S. V., & Downs, R. T., 2022, Lumping and splitting: Toward a classification of mineral natural kinds. American Mineralogist, doi: 10.2138/am-2022-8105
  45. He, Y., Zhou, Y., Wen, T., Zhang, S., Huang, F., Zou, X., Ma, X., Zhu, Y., 2022, A review of machine learning in geochemistry and cosmochemistry: Method improvements and applications, Applied Geochemistry, doi:10.1016/j.apgeochem.2022.105273
  46. Helmick, M., 2022, Investigation of Cryptotephra in Polar Ice Cores, Electronic Theses and Dissertations. https://digitalcommons.library.umaine.edu/etd/3722
  47. Hofmann, A. W., Class, C., & Goldstein, S. L., (n.d.), Size and composition of the MORB+OIB mantle reservoir. Geochemistry, Geophysics, Geosystems, doi: 10.1029/2022GC010339
  48. Hopley, P., Cerling, T., Crété, L., Werdelin, L., Mwebi, O., Manthi, F., Leakey, L., 2022, Stable isotope analysis of carnivores from the Turkana Basin, Kenya: Evidence for temporally-mixed fossil assemblages, Quaternary International, doi: 10.1016/j.quaint.2022.04.004
  49. Hoyer, P.A., Haase, K.M., Regelous, M. et al., 2022, Mantle plume and rift-related volcanism during the evolution of the Rio Grande Rise, Commun Earth Environ.,  doi:10.1038/s43247-022-00349-1
  50. Jackson, M. G., & Macdonald, F. A., 2022, Hemispheric Geochemical Dichotomy of the Mantle Is a Legacy of Austral Supercontinent Assembly and Onset of Deep Continental Crust Subduction, AGU Advances, doi: 10.1029/2022AV000664
  51. Johnson, T. E., Kirkland, C. L., Lu, Y., Smithies, R. H., Brown, M., & Hartnady, M. I. H., 2022, Giant impacts and the origin and evolution of continents. Nature, doi: 10.1038/s41586-022-04956-y
  52. Katz, S. A., Levin, N. E., Rodbell, D. T., Gillikin, D. P., Aron, P. G., Passey, B. H., Tapia, P. M., Serrepe, A. R., & Abbott, M. B, 2023, Detecting hydrologic distinctions among Andean lakes using clumped and triple oxygen isotopes, Earth and Planetary Science Letters. doi: 10.1016/j.epsl.2022.117927
  53. Keefer, D. A., & Blake, C., 2022, Human-Driven Models: A Case Study of Geologists as They Engage with Data for Decision Making, Proceedings of the Association for Information Science and Technology, doi:10.1002/pra2.649
  54. Kelson, J., Petersen, S., Niemi, N., Passey, B., Curley, A., 2022, Looking upstream with clumped and triple oxygen isotopes of estuarine oyster shells in the early Eocene of California, USA. Geology, doi: 10.1130/G49634.1
  55. Kern, C., Aiuppa, A. & de Moor, J.M. ,2022,A golden era for volcanic gas geochemistry?. Bull Volcanol 84, 43 (2022). doi: 10.1007/s00445-022-01556-6
  56. Kis, B. M., Szalay, R., Aiuppa, A., Bitetto, M., Palcsu, L., & Harangi, S., 2022, Compositional measurement of gas emissions in the Eastern Carpathians (Romania) using the Multi-GAS instrument: Approach for in situ data gathering at non-volcanic areas, Journal of Geochemical Exploration, doi: 10.1016/j.gexplo.2022.107051
  57. Klöcking, M., Wyborn, L., Lehnert, K., Ware, B., Prent, A. M., Profeta, L., Kohlmann, F., Noble, W., Bruno, I., Lambart, S., Ananuer, H., Barber, N. D., Becker, H., Brodbeck, M., Deng, H., Deng, K., Elger, K., Franco, G. de S., Gao, Y., Ghasera, K. M., Hezel, D. C., Huang, J., Kerswell, B., Koch, H., Lanai, A. W., Matt, G., Martínez-Villegas, N., Yobo, L. N., Redaa, A., Schäfer, W., Swing, M. R., Taykore, R. J. M., Traun, M. K., Whelan, J., Zhou, T., 2022, Community recommendations for geochemical data, services and analytical capabilities in the 21st century. doi:10.31223/X5H07Q
  58. Koffman, B. G., Saylor, P., Zhong, R., Sethares, L., Yoder, M. F., Hanschka, L., Methven, T., Cai, Y., Bolge, L., Longman, J., Goldstein, S. L., & Osterberg, E. C., 2022, Provenance of Anthropogenic Pb and Atmospheric Dust to Northwestern North America, Environmental Science & Technology. doi: 10.1021/acs.est.2c03767
  59. Kopp, M., Kaye, J., Smeglin, Y. H., Adams, T., Primka, E. J., Bradley, B., Shi, Y., & Eissenstat, D., 2022, Topography Mediates the Response of Soil CO2 Efflux to Precipitation Over Days, Seasons, and Years, Ecosystems. doi: 10.1007/s10021-022-00786-1
  60. Kurek, M. R., Stubbins, A., Drake, T. W., Moura, J. M. S., Holmes, R. M., Osterholz, H., Six, J., Wabakanghanzi, J. N., Dinga, B., Mitsuya, M., Spencer, R.G.M., 2022, Organic Molecular Signatures of the Congo River and Comparison to the Amazon, Global Biogeochemical Cycles. doi: 10.1029/2022GB007301
  61. Lang, O. I., & Lambart, S., 2022, First-row transition elements in pyroxenites and peridotites: A promising tool for constraining the mantle source mineralogy, Chemical Geology. doi: 10.1016/j.chemgeo.2022.121137
  62. Lefeuvre, N., Truche, L., Donzé, F.-V., Gal, F., Tremosa, J., Fakoury, R.-A., Calassou, S., & Gaucher, E. C., 2022, Natural hydrogen migration along thrust faults in foothill basins: The North Pyrenean Frontal Thrust case study. Applied Geochemistry, doi: 10.1016/j.apgeochem.2022.105396
  63. Leicher, N., Giaccio, B., Pereira, A., Nomade, S., Monaco, L., Mannella, G., Galli, P., Peronance, E., Palladino, D. M., Sottili, G., Zanchetta, G., & Wagner, B., n.d., Central Mediterranean tephrochronology between 313 and 366 ka: New insights from the Fucino palaeolake sediment succession, Boreas, doi: 10.1111/bor.12610
  64. Li, S., Zhang, M., Yuan, F., Li, X., Wang, C., Long, J., & Jiao, J., 2022, Isotope spatiotemporal analysis and prospecting indication based on GIS in Tibet. Ore Geology Reviews, doi:10.1016/j.oregeorev.2022.104997
  65. Licht, A., Kelson, J., Bergel, S., Schauer, A., Petersen, S. v., Capirala, A., Huntington, K. w, Dupont-Nivet, G., Win, Z., & Aung, D. W., n.d., Dynamics of pedogenic carbonate growth in the tropical domain of Myanmar. Geochemistry, Geophysics, Geosystems, doi: 10.1029/2021GC009929
  66. Linzmeier, B. J., Jacobson, A. D., Sageman, B. B., Hurtgen, M. T., Ankney, M. E., Masterson, A. L., & Landman, N. H., 2022, Isotope systematics of subfossil, historical, and modern Nautilus macromphalus from New Caledonia, PLOS ONE. doi:10.1371/journal.pone.0277666
  67. Lowe, D. J., Abbott, P. M., Suzuki, T., & Jensen, B. J. L., 2022, Global tephra studies: Role and importance of the international tephra research group “Commission on Tephrochronology” in its first 60 years. History of Geo- and Space Sciences, doi: 10.5194/hgss-13-93-2022
  68. Lü, Q.-Q., Chen, Y.-X., Henderson, J., & Bayon, G., 2023, A large-scale Sr and Nd isotope baseline for archaeological provenance in Silk Road regions and its application to plant-ash glass. Journal of Archaeological Science, doi:10.1016/j.jas.2022.105695
  69. Ma, C., Morrison, S. M., Muscente, A. D., Wang, C., & Ma, X., n.d., Incorporate temporal topology in a deep-time knowledge base to facilitate data-driven discovery in geoscience, Geoscience Data Journal, doi: 10.1002/gdj3.171
  70. Ma, C., Tang, Y., Foley, S. F., Ye, C., Ying, J., Zhao, X., Xiao, Y., & Zhang, H., n.d., Phosphorus Variations in Volcanic Sequences Reveal the Linkage between Regional Tectonics and Terrestrial Biota Evolution. Geochemistry, Geophysics, Geosystems, doi:10.1029/2022GC010536
  71. Ma, C., Tang, Y., Ye, C., Ying, J., & Zhang, H., 2022, Mechanisms for phosphorus fluctuation in Phanerozoic volcanic rocks., Lithos. doi: 10.1016/j.lithos.2022.106764
  72. Ma, C., Tang, Y., & Ying, J., 2022, Volcanic phosphorus spikes associated with supercontinent assembly supported the evolution of land plants. Earth-Science Reviews, doi: 10.1016/j.earscirev.2022.104101
  73. Ma, C., Tang, Y., & Ying, J., 2022, Global tectonics and oxygenation events drove the Earth-scale phosphorus cycle, Earth-Science Reviews, doi: 10.1016/j.earscirev.2022.104166
  74. Maltese, A., Caro, G., Pandey, O.P. et al., 2020, Direct evidence for crust-mantle differentiation in the late Hadean. Commun Earth Environ, doi: 10.1038/s43247-022-00341-9
  75. Martin, E. L., Barrote, V. R., & Cawood, P. A., 2022, A resource for automated search and collation of geochemical datasets from journal supplements, Scientific Data. doi:10.1038/s41597-022-01730-7
  76. Mastroianni, F., Braschi, E., Casalini, M., Agostini, S., Di Salvo, S., Vougioukalakis, G., Francalanci, L., 2022, Data on unveiling the occurrence of transient, multi-contaminated mafic magmas inside a rhyolitic reservoir feeding an explosive eruption (Nisyros, Greece),Data in Brief, doi:10.1016/j.dib.2022.108077
  77. Moghadam, H., Hoernle, K., Hauff,F. , Garbe-Schönberg,D. , Pfänder,J.A., 2022,
    Geochemistry and petrogenesis of alkaline rear-arc magmatism in NW Iran, Lithos, doi: 10.1016/j.lithos.2021.106590
  78. Mougel, B., Agranier, A., Gente, P., & Hemond, C., 2022, 320,000 years of interaction between a fast-spreading ridge and nearby seamounts monitored using major, trace and isotope composition data from oceanic basalts: Zoom at 15.6°N on the East Pacific Rise, Data in Brief, doi: 10.1016/j.dib.2022.108550
  79. Munroe, J. S., 2022, Relation between regional drought and mountain dust deposition revealed by a 10-year record from an alpine critical zone. Science of The Total Environment, doi: 10.1016/j.scitotenv.2022.156999
  80. Nicoli, G., Borghini, A., & Ferrero, S., 2022, The carbon budget of crustal reworking during continental collision: Clues from nanorocks and fluid inclusions, Chemical Geology, doi: 10.1016/j.chemgeo.2022.121025
  81. Nikitczuk, M. P., Bebout, G. E., Geiger, C. A., Ota, T., Kunihiro, T., Mustard, J. F., Halldórsson, S. A., & Nakamura, E. (2022). Nitrogen Incorporation in Potassic and Micro- and Meso-Porous Minerals: Potential Biogeochemical Records and Targets for Mars Sampling. Astrobiology. doi: 10.1089/ast.2021.0158
  82. Qi, Y., Wang, Q., Wei, G.-J., Li, J., & Wyman, D. A., 2022, Magnesium and Calcium Isotopic Geochemistry of Silica-Undersaturated Alkaline Basalts: Applications for Tracing Recycled Carbon, Geochemistry, Geophysics, Geosystems. doi: 10.1029/2022GC010463
  83. Quesnel, B., Jautzy, J., Scheffer, C., Raymond, G., Beaudoin, G., Jørgensen, T. R. C., & Pinet, N., 2022, Clumped isotope geothermometry in Archean mesothermal hydrothermal systems (Augmitto-Bouzan orogenic gold deposit, Abitibi, Québec, Canada): A note of caution and a look forward, Chemical Geology. doi: 10.1016/j.chemgeo.2022.121099
  84. Phelps, P. R., 2022, Micro to macro: Investigating magmatic processes from crystals to satellites [Thesis, Rice University]. https://scholarship.rice.edu/handle/1911/114193
  85. Phillips, S., Littler, K., 2022, Comparison of sediment composition by smear slides to quantitative shipboard data: a case study on the utility of smear slide percent estimates, IODP Expedition 353, northern Indian Ocean, Sci. Dril., doi:10.5194/sd-30-59-2022
  86. Ramirez Salazar, A., 2022, The metamorphic evolution of the Isua supracrustal belt: Implications for Archean tectonics [Phd, University of Leeds]. https://etheses.whiterose.ac.uk/31470/
  87. Raimbourgh, H., Famin, V., Canizares, A., Le Trong, E., 2022, Fluid pressure changes recorded by trace elements in quartz, G-Cubed, doi: 10.1029/2022GC010346
  88. Rasmussen, D., Plank, T., Roman, D., Zimmer, M., 2022, Magmatic water content controls the pre-eruptive depth of arc magmas, Science, doi:10.1126/science.abm5174
  89. Reubi, O., Müntener, O., 2022, Making andesites and the continental crust: Mind the step when wet, Journal of Petrology, doi: 10.1093/petrology/egac044
  90. Rooyakkers, S. M., Faure, K., Chambefort, I., Barker, S. J., Elms, H. C., Wilson, C. J. N., & Charlier, B. L. A., n.d., Tracking magma-crust-fluid interactions at high temporal resolution: Oxygen isotopes in young silicic magmas of the Taupō Volcanic Zone, Geochemistry, Geophysics, Geosystems. doi:10.1029/2022GC010694
  91. Ryb, U., Erel, Y., Matthews, A., Avni, Y., & Stern, D., n.d., Sources, timing, environmental and tectonic implications of epigenetic mineralization along the Arabian-African plate boundary. Geochemistry, Geophysics, Geosystems. doi:10.1029/2022GC010549
  92. Sammon, L. G., 2022, Earth’s Radiogenic Heat Production and the Composition of the Deep Continental Crust. doi: 10.13016/3rn6-wgpy
  93. Schwab, M. S., Gies, H., Freymond, C. V., Lupker, M., Haghipour, N., & Eglinton, T. I., 2022, Environmental and hydrologic controls on sediment and organic carbon export from a subalpine catchment: Insights from a time-series, Biogeochemistry: Organic Biogeochemistry. doi: 10.5194/egusphere-2022-705
  94. Sehsah, H., Furnes, H., Pham, L. T., & Eldosouky, A. M., 2022, Plume–MOR decoupling and the timing of India–Eurasia collision. Scientific Reports, doi: 10.1038/s41598-022-16981-y
  95. Shaughnessy, A, 2022, Weathering Dynamics in Watersheds: Connecting River Chemistry to Subsurface Mineral Distributions [Pennsylvania State University]. https://etda.libraries.psu.edu/catalog/20199ars637
  96. Shinevar, W. J., Jagoutz, O., & Behn, M. D., n.d., WISTFUL: Whole-rock Interpretative Seismic Toolbox for Ultramafic Lithologies. Geochemistry, Geophysics, Geosystems, doi: 10.1029/2022GC010329
  97. Smith, M. E., Moore, E. W., & Swart, P. K., 2022, Constraining diagenesis within shallow water carbonate environments: Insights from clumped and sulfur isotopes, Chemical Geology, doi:10.1016/j.chemgeo.2022.121183
  98. Simonella, L. E., Cosentino, N. J., Montes, M. L., Croot, P. L., Palomeque, M. E., & Gaiero, D. M., 2022, Low source-inherited iron solubility limits fertilization potential of South American dust. Geochimica et Cosmochimica Acta, doi: 10.1016/j.gca.2022.06.032
  99. Small, Marie, 2022, Establishing the mantle sources of post glacial Icelandic basalts using trace element analysis [The Open University]. doi: 10.21954/OU.RO.00015119
  100. Smith, M., Swart, P., 2022, The influence of diagenesis on carbon and oxygen isotope values in shallow water carbonates from the Atlantic and Pacific: Implications for the interpretation of the global carbon cycle,Sedimentary Geology, doi: 10.1016/j.sedgeo.2022.106147
  101. Song, Y., Tian, Y., Yu, J., Algeo, T. J., Luo, G., Chu, D., & Xie, S., 2022, Wildfire response to rapid climate change during the Permian-Triassic biotic crisis, Global and Planetary Change. doi: 10.1016/j.gloplacha.2022.103872
  102. Steiner, A.,  Hickey, K. , Huntington, K., Schauer; A.,  2022, “Roll-Front” Mass Transfer of Carbonate Cations in Carlin-Type Gold Deposits: Insights from UV-Fluorescent Calcite Veins. Economic Geology, doi: 10.5382/econgeo.4908
  103. Sun, Y., Gao, R., Li, Z., Wang, A., Han, R., Xi, Y., & Liu, J., 2022, Composition and Evolution of Continental Crust at Orogenic Belts: Constraints From a 3-D Crustal Model of Southeast China, Journal of Geophysical Research: Solid Earth. doi: 10.1029/2022JB025057
  104. Tortelli, G., Gioncada, A., Pagli, C., Braschi, E., Gebru, E. F., & Keir, D., n.d., Constraints on the magma source and rift evolution from geochemistry of the Stratoid flood basalts (Afar, Ethiopia). Geochemistry, Geophysics, Geosystems, doi: 10.1029/2022GC010434
  105. Urann, B.M., Le Roux, V., Jagoutz, O. et al. , 2022,High water content of arc magmas recorded in cumulates from subduction zone lower crust. Nat. Geosci. doi: 10.1038/s41561-022-00947-w
  106. Valbi, V., Perez, A., Verney-Carron, A., Boutillez, C., Ranchoux, A., Fourdrin, C., Rossano, S., 2022, Impact of biogenic exudates on the dissolution and browning of stained glass windows, International Biodeterioration & Biodegradation, doi: 10.1016/j.ibiod.2022.105442
  107. van Zalinge, M. E., Mark, D. F., Sparks, R. S. J., Tremblay, M. M., Keller, C. B., Cooper, F. J., & Rust, A., 2022, Timescales for pluton growth, magma-chamber formation and super-eruptions, Nature, doi:10.1038/s41586-022-04921-9
  108. Vaughn, D. R., Kellerman, A. M., Wickland, K. P., Striegl, R. G., Podgorski, D. C., Hawkings, J. R., Nienhuis, J. H., Dornblaser, M. M., Stets, E. G., & Spencer, R. G. M., 2022, Bioavailability of Dissolved Organic Matter Varies with Anthropogenic Landcover in the Upper Mississippi River Basin. Water Research, doi: 10.1016/j.watres.2022.119357
  109. Wallace, K. L., Bursik, M. I., Kuehn, S., Kurbatov, A. V., Abbott, P., Bonadonna, C., Cashman, K., Davies, S. M., Jensen, B., Lane, C., Plunkett, G., Smith, V. C., Tomlinson, E., Thordarsson, T., & Walker, J. D., 2022, Community established best practice recommendations for tephra studies—From collection through analysis, Scientific Data, doi: 10.1038/s41597-022-01515-y
  110. Wagner, B., Tauber, P., Francke, A., Leicher, N., Binnie, S. A., Cvetkoska, A., Jovanovska, E., Just, J., Lacey, J. H., Levkov, Z., Lindhorst, K., Kouli, K., Krastel, S., Pana-giotopoulos, K., Ulfers, A., Zaova, D., Donders, T. H., Grazhdani, A., Koutsodendris, A., Leng, M.J., Sadori, L., Scheinert, M., Vogel, H., Wonik, T., Zanchetta, G., & Wilke, T. (n.d.). The geodynamic and limnological evolution of Balkan Lake Ohrid, possibly the oldest extant lake in Europe. Boreas. doi.org:10.1111/bor.12601
  111. Weber, C. J., & Bigalke, M., 2022, Opening Space for Plastics—Why Spatial, Soil and Land Use Data Are Important to Understand Global Soil (Micro)Plastic Pollution. Microplastics. doi: 10.3390/microplastics1040042
  112. Werner, C., Schipper, C. I., Cronin, S. j., Barry, P. H., & Stewart, M. K., n.d., Magmatic carbon and helium in springs reveals the vitality of a dormant volcano, Taranaki, New Zealand, Geophysical Research Letters. doi: 10.1029/2022GL099273
  113. Winslow, H., Ruprecht, P., Gonnermann, H., Phelps, P., Mu oz-Saez, C., Delgado, F, Pritchard, M., Amigo, A., 2022, Insights for crystal mush storage utilizing mafic enclaves from the 2011-12 Cordon Caulle eruption, Research Square, doi:10.21203/rs.3.rs-1366483/v1
  114. Wrobel-Daveau, J.-C., Nicoll, G., Tetley, M. G., Gréselle, B., Perez-Diaz, L., Davies, A., & Eglington, B. M., 2022, Plate tectonic modelling and energy transition, Earth-Science Reviews. doi: 10.1016/j.earscirev.2022.104227
  115. Wu, Y., Pena, L. D., Anderson, R. F., Hartman, A. E., Bolge, L. L., Basak, C., Kim, J., Rijkenberg, M. J. A., de Baar, H. J. W., & Goldstein, S. L., 2022, Assessing neodymium isotopes as an ocean circulation tracer in the Southwest Atlantic. Earth and Planetary Science Letters. doi: 10.1016/j.epsl.2022.117846
  116. Wu, G., Zhu, J.-M., Wang, X., Johnson, T. M., He, Y., Huang, F., Wang, L.-X., & Lai, S.-C. (2022). Nickel isotopic composition of the upper continental crust. Geochimica et Cosmochimica Acta. https://doi.org/10.1016/j.gca.2022.06.019
  117. Wu, M., Richard, S. M., Verhey, C., Castro, L. J., Cecconi, B., & Juty, N., 2022, An analysis of crosswalks from research data schemas to Schema.org, Data Intelligence. doi: 10.1162/dint_a_00186
  118. Wu, X., Han, X., Wang, Y., Garbe-Schönberg, D., Schmidt, M., Zhang, Z., Qiu, Z., Zong, T., Zhou, P., Yu, X., Liu, J., & Luo, H., 2022, Geochemistry of vent fluids from the Daxi Vent Field, Carlsberg Ridge, Indian Ocean: Constraints on subseafloor processes beneath a non-transform offset, Marine Geology. doi:10.1016/j.margeo.2022.106955
  119. Xu, C., Gréaux, S., Inoue, T., Noda, M., Gao, J., & Li, Y., 2022, Sound velocities of superhydrous phase B up to 21 GPa and 900 K. Geophysical Research Letters doi: 10.1029/2022GL098674
  120. Ye, Shan, (n.d.), A Quantitative Investigation of Large Geoscientific Datasets: How Records of Geochronology and Macroevolution Are Distorted by Paleoclimate, Paleoenvironment, and Sediment Preservation – ProQuest, Retrieved September 9, 2022, from https://www.proquest.com/openview/854ff6ec723bdf3c36108ee0366fac62/1.pdf?pq-origsite=gscholar&cbl=18750&diss=y
  121. Yu, X., Liu, Z., Wu, J., An, Y.-J., & Shi, J. (2022). Iron isotopic variations in basalts from oceanic crust due to low-temperature seawater alteration. Marine Geology. doi:10.1016/j.margeo.2022.106949
  122. Zambito, J. J., Haas, L. D., & Parsen, M. J., 2022, A portable x-ray fluorescence (pXRF) elemental dataset collected from Cambrian-age sandstone aquifer material, Wisconsin, U.S.A. Data in Brief. doi: 10.1016/j.dib.2022.108411
  123. Zaremba, N. J., Scholz, C. A., & Moucha, R., 2022, Application of first arrival seismic tomography in a glaciated basin: Implications for paleo-ice stream development, Journal of Glaciology. doi: 10.1017/jog.2022.72
  124. Zhao, K., Xu, X., Klemd, R., He, Z., & Zhang, X., 2022, A review of the genetic mechanisms generating igneous charnockite: CO2 flushing and crystal-melt segregation in mushy reservoirs, Earth-Science Reviews. doi:10.1016/j.earscirev.2022.104295
  125. Zirakparvar, N. A, 2022, Industrial garnet as an unconventional heavy rare earth element resource: Preliminary insights from a literature survey of worldwide garnet trace element concentrations, Ore Geology Reviews, doi: 10.1016/j.oregeorev.2022.105033
  126. Zurkowski, C. C., Yang, J., Chariton, S., Prakapenka, V. B., & Fei, Y., n.d., Synthesis and Stability of an Eight-Coordinated Fe3O4 High-Pressure Phase: Implications for the Mantle Structure of Super-Earths. Journal of Geophysical Research: Planets, doi:10.1029/2022JE007344